forked from NicoleSorokin/4al3-final-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn.py
173 lines (145 loc) · 6.64 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
### NEURAL NETWORK MODEL IMPLEMENTATION ###
## By Nicole Sorokin ##
# import necessary libraries
import torch
import torch.nn as nn
import torch.nn.functional as F
import sys
import os
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader, TensorDataset # for batch training
from sklearn.metrics import accuracy_score, recall_score, f1_score # for evaluating
import numpy as np
import preprocessing as pp # import the preprocessing file
# defining the nn
class diabetes_neural_network(nn.Module) :
def __init__(self, features) :
super(diabetes_neural_network, self).__init__()
# define the fully connected layers
# play around with these
self.fc1 = nn.Linear(features, 256)
self.fc2 = nn.Linear(256, 64)
self.fc3 = nn.Linear(64, 1)
# self.fc4 = nn.Linear(64, 32)
# self.fc5 = nn.Linear(32, 1)# 0 = no diabetes 1 = prediabetes or diabetes
self.dropout = nn.Dropout(0.5) # trying regularization
# define the forward pass of the model
def forward(self, x) :
# fc
x = self.fc1(x)
# relu
x = F.relu(x)
# fc
x = self.fc2(x)
# relu
x = F.relu(x)
# fc
x = self.fc3(x)
# relu
# x = F.relu(x)
# # fc
# x = self.fc4(x)
# # relu
# x = F.relu(x)
# # fc
# x = self.fc5(x)
# # relu
# x = F.relu(x)
# outputting as a probability
x = self.dropout(x) # regularization
x = torch.sigmoid(x) # apply sigmoid to get probabilities
return x
# define the training function
def training_nn(model, train_loader, optimizer, loss_func, X_val_tensor, y_val_tensor) :
print("Training model...")
training_losses = [] # to store the training losses
# Run the algorithm for this many iterations
EPOCH = 200
for e in range(EPOCH):
model.train() # sets the model to training mode
cumulative_loss = 0 # intantiate the cumulative loss
for x, y in train_loader: # for each batch in the training set
optimizer.zero_grad() # reset the graident to 0, do this to avoid accumualtion
outputs = model(x) # predict the probabilities (between 0 and 1)
loss = loss_func(outputs, y) # calculate the loss
loss.backward() # backpropagation
optimizer.step() # perform gradient descent
cumulative_loss += loss.item() # add the loss to the cumulative loss
training_losses.append(cumulative_loss / len(train_loader)) # append the average loss for this epoch to the list
# evaluate on validation set
model.eval() # sets the model to evaluation mode
with torch.no_grad(): # no gradient computation during evaluation
val_outputs = model(X_val_tensor) # predict the probabilities (between 0 and 1)
val_predictions = (val_outputs >= 0.5).float() # threshold at 0.5 to get binary predictions
y_val_numpy = y_val_tensor.numpy() # convert tensor to numpy array
# evaluation metrics
val_accuracy = accuracy_score(y_val_numpy, val_predictions)
val_recall = recall_score(y_val_numpy, val_predictions)
val_f1 = f1_score(y_val_numpy, val_predictions)
# print the evaluation metrics for every 10th epoch
if e % 10 == 0 and e != 0:
print("Current epoch:", e)
print("\tAvg training loss:", cumulative_loss / len(train_loader))
print("\tValidation accuracy:", val_accuracy)
print("\tValidation recall:", val_recall)
print("\tValidation f1 score:", val_f1)
# plot the validation losses over epochs
plt.title("Training Loss Across Epochs")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.plot(range(EPOCH), training_losses, label="Training Loss")
plt.legend()
plt.show()
# define the evaluation function
def evaluating_nn(model, X_test_tensor, y_test_tensor) :
# evaluate on held out test set
model.eval() # sets the model to evaluation mode
with torch.no_grad(): # no gradient computation during evaluation
test_outputs = model(X_test_tensor) # predict the probabilities (between 0 and 1)
test_predictions = (test_outputs >= 0.5).float() # threshold at 0.5 to get binary predictions
y_test_numpy = y_test_tensor.numpy() # convert tensor to numpy array
# evaluation metrics
test_accuracy = accuracy_score(y_test_numpy, test_predictions)
test_recall = recall_score(y_test_numpy, test_predictions)
test_f1 = f1_score(y_test_numpy, test_predictions)
# print the evaluation metrics
print("\nEvaluation Metrics On Held Out Test Set")
print("\tAccuracy:", test_accuracy*100)
print("\tRecall:", test_recall*100)
print("\tF1 score:", test_f1*100)
# define the main function where the model is trained and evaluated
def neural_network_model() :
# load the dataset
X_train, X_test, y_train, y_test = pp.preprocessing(0.1, False) # use 10% of the samples for training
# split training into train and validation-implent kfold cross validation later
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42)
# save the data
np.save("X_test.npy", X_test)
np.save("y_test.npy", y_test)
# convert to tensors
X_train_tensor = torch.tensor(X_train.values, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train.values, dtype=torch.float32).unsqueeze(1)#adding a dimension to the tensor to make it compatible with the model
X_val_tensor = torch.tensor(X_val.values, dtype=torch.float32)
y_val_tensor = torch.tensor(y_val.values, dtype=torch.float32).unsqueeze(1)#adding a dimension to the tensor to make it compatible with the model
X_test_tensor = torch.tensor(X_test.values, dtype=torch.float32)
y_test_tensor = torch.tensor(y_test.values, dtype=torch.float32).unsqueeze(1)#adding a dimension to the tensor to make it compatible with the model
# create dataloaders for batch training
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
# get number of features
num_features = X_train_tensor.shape[1]
# initialize model with the number of features
model = diabetes_neural_network(num_features)
# define loss function
loss_func = nn.BCELoss()
# define optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
# train the model
training_nn(model, train_loader, optimizer, loss_func, X_val_tensor, y_val_tensor)
model_path = "nn.pkl"
torch.save(model, model_path)
# evaluate the model
evaluating_nn(model, X_test_tensor, y_test_tensor)
# call the main function
neural_network_model()