forked from JxingLi/PINNs_Cylinder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasic_model_pdpd.py
165 lines (131 loc) · 6.14 KB
/
basic_model_pdpd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import paddle
import paddle.nn as nn
import numpy as np
def gradients(y, x, order=1, create=True):
if order == 1:
return paddle.autograd.grad(y, x, create_graph=create, retain_graph=True)[0]
else:
return paddle.stack([paddle.autograd.grad([y[:, i].sum()], [x], create_graph=True, retain_graph=True)[0]
for i in range(y.shape[1])], axis=-1)
class DeepModel_multi(nn.Layer):
def __init__(self, planes, data_norm, active=nn.GELU()):
super(DeepModel_multi, self).__init__()
self.planes = planes
self.active = active
self.x_norm = data_norm[0]
self.f_norm = data_norm[1]
self.layers = nn.LayerList()
for j in range(self.planes[-1]):
layer = []
for i in range(len(self.planes) - 2):
layer.append(nn.Linear(self.planes[i], self.planes[i + 1], weight_attr=nn.initializer.XavierNormal()))
layer.append(self.active)
layer.append(nn.Linear(self.planes[-2], 1, weight_attr=nn.initializer.XavierNormal()))
self.layers.append(nn.Sequential(*layer))
# self.layers[-1].apply(initialize_weights)
def forward(self, in_var, in_norm=True, out_norm=True):
if in_norm:
in_var = self.x_norm.norm(in_var)
# in_var = in_var * self.input_transform
y = []
for i in range(self.planes[-1]):
y.append(self.layers[i](in_var))
if out_norm:
return self.f_norm.back(paddle.concat(y, axis=-1))
else:
return paddle.concat(y, axis=-1)
def loadmodel(self, File):
try:
checkpoint = paddle.load(File)
self.set_state_dict(checkpoint['model']) # 从字典中依次读取
start_epoch = checkpoint['epoch']
print("load start epoch at " + str(start_epoch))
log_loss = checkpoint['log_loss'] # .tolist()
return start_epoch, log_loss
except:
print("load model failed! start a new model.")
return 0, []
def equation(self, inv_var, out_var):
return 0
class DeepModel_single(nn.Layer):
def __init__(self, planes, data_norm, active=nn.GELU()):
super(DeepModel_single, self).__init__()
self.planes = planes
self.active = active
self.x_norm = data_norm[0]
self.f_norm = data_norm[1]
self.layers = nn.LayerList()
for i in range(len(self.planes) - 2):
self.layers.append(nn.Linear(self.planes[i], self.planes[i + 1], weight_attr=nn.initializer.XavierNormal()))
self.layers.append(self.active)
self.layers.append(nn.Linear(self.planes[-2], self.planes[-1], weight_attr=nn.initializer.XavierNormal()))
self.layers = nn.Sequential(*self.layers)
# self.apply(initialize_weights)
def forward(self, inn_var, in_norm=True, out_norm=True):
if in_norm:
inn_var = self.x_norm.norm(inn_var)
out_var = self.layers(inn_var)
if out_norm:
return self.f_norm.back(out_var)
else:
return out_var
def loadmodel(self, File):
try:
checkpoint = paddle.load(File)
self.set_state_dict(checkpoint['model']) # 从字典中依次读取
start_epoch = checkpoint['epoch']
print("load start epoch at " + str(start_epoch))
log_loss = checkpoint['log_loss'] # .tolist()
return start_epoch, log_loss
except:
print("load model failed! start a new model.")
return 0, []
def equation(self, **kwargs):
return 0
class Dynamicor(nn.Layer):
def __init__(self, device, coords):
super(Dynamicor, self).__init__()
self.c, self.rho, self.uinf = 1.0, 1.0, 1.0
self.Re = 250
self.miu = self.c * self.rho * self.uinf / self.Re
self.device = device
self.coords = paddle.to_tensor(coords, dtype='float32', place=device)
cir_num = self.coords.shape[0]
self.ind1 = [i for i in range(cir_num)]
self.ind2 = [i for i in range(1, cir_num)]
self.ind2.append(0)
self.T_vector = paddle.to_tensor(self.coords.numpy()[self.ind2, 0, :]) - paddle.to_tensor(self.coords.numpy()[self.ind1, 0, :])
self.N_vector = paddle.matmul(self.T_vector, paddle.to_tensor(np.array([[0, -1], [1, 0]]),
dtype='float32', place=self.device))
self.T_norm = paddle.norm(self.T_vector, axis=-1)
self.N_norm = paddle.norm(self.N_vector, axis=-1)
self.delta = self.coords[:, 0] - self.coords[:, 1]
self.delta = paddle.norm(self.delta, axis=-1)
def cal_force(self, fields):
p =fields[:, :, 0, 0]
p_ave = paddle.to_tensor(p.numpy()[:, self.ind1]) + paddle.to_tensor(p.numpy()[:, self.ind2]) / 2.
Ft_n = p_ave * self.T_norm
Fx = - Ft_n * self.N_vector[:, 0] / self.N_norm
Fy = - Ft_n * self.N_vector[:, 1] / self.N_norm
# tao = -miu * du/dn at grid point
# fields : [96, 198, (p,u,v)]
u = fields[:, :, 1, 1:]
du = (u[:, :, 0] * self.T_vector[:, 0] + u[:, :, 1] * self.T_vector[:, 1]) / self.T_norm
tau = du / self.delta * self.miu
tau_ave = (paddle.to_tensor(tau.numpy()[:, self.ind1]) + paddle.to_tensor(tau.numpy()[:, self.ind2])) * 0.5
# tau_ave = (tau[:, self.ind1] + tau[:, self.ind2]) * 0.5
T_n = tau_ave * self.T_norm
Tx = T_n * self.T_vector[:, 0] / self.T_norm
Ty = T_n * self.T_vector[:, 1] / self.T_norm
Fx = paddle.sum(Fx, axis=1)
Fy = paddle.sum(Fy, axis=1)
Tx = paddle.sum(Tx, axis=1)
Ty = paddle.sum(Ty, axis=1)
return Fx, Fy, Tx, Ty
def forward(self, fields):
Fx, Fy, Tx, Ty = self.cal_force(fields)
Fx += Tx
Fy += Ty
CL = Fy/(0.5*self.rho*self.uinf**2)
CD = Fx / (0.5 * self.rho * self.uinf ** 2)
return paddle.stack((Fy, Fx, CL, CD), axis=-1)