-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathadvanced_comprehensions.py
executable file
·168 lines (129 loc) · 5.24 KB
/
advanced_comprehensions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/usr/bin/env python3
"""
Advanced Comprehensions in Python
================================
This module demonstrates advanced uses of comprehensions in Python,
including list, dict, set, and generator comprehensions with
nested loops, conditionals, and transformations.
Designed to work well with IPython for interactive exploration.
"""
# Basic Comprehension Examples
def basic_comprehensions():
"""Demonstrate basic comprehension syntax"""
# List comprehension
squares = [x**2 for x in range(10)]
print(f"Squares: {squares}")
# Dict comprehension
square_map = {x: x**2 for x in range(10)}
print(f"Square map: {square_map}")
# Set comprehension
even_squares = {x**2 for x in range(10) if x % 2 == 0}
print(f"Even squares: {even_squares}")
# Generator comprehension (note the parentheses)
gen = (x**2 for x in range(10))
print(f"Generator: {gen}")
print(f"Generator values: {list(gen)}")
# Nested Comprehensions
def nested_comprehensions():
"""Demonstrate nested comprehensions"""
# Nested list comprehension - flattening a matrix
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
flattened = [x for row in matrix for x in row]
print(f"Flattened matrix: {flattened}")
# Creating a matrix with comprehension
size = 3
identity = [[1 if i == j else 0 for j in range(size)] for i in range(size)]
print(f"Identity matrix:\n{identity[0]}\n{identity[1]}\n{identity[2]}")
# Nested dict comprehension
nested_dict = {
f"key_{i}": {f"subkey_{j}": i * j for j in range(3)} for i in range(3)
}
print(f"Nested dictionary: {nested_dict}")
# Comprehensions with Conditionals
def conditional_comprehensions():
"""Demonstrate comprehensions with complex conditionals"""
# Multiple conditions
numbers = list(range(20))
filtered = [x for x in numbers if x % 2 == 0 if x % 3 == 0]
print(f"Numbers divisible by both 2 and 3: {filtered}")
# If-else in comprehension (ternary expressions)
categorized = ["even" if x % 2 == 0 else "odd" for x in range(10)]
print(f"Even/odd categorization: {categorized}")
# Filter and transform
transformed = [x**2 if x % 2 == 0 else x**3 for x in range(10)]
print(f"Transformed values: {transformed}")
# Advanced Transformations
def advanced_transformations():
"""Demonstrate advanced transformations in comprehensions"""
# Using zip in comprehension
keys = ["a", "b", "c"]
values = [1, 2, 3]
dict_from_lists = {k: v for k, v in zip(keys, values)}
print(f"Dictionary from lists: {dict_from_lists}")
# Comprehension with function calls
def process(x):
return x * 10 if x > 5 else x
processed = [process(x) for x in range(10)]
print(f"Processed values: {processed}")
# Dictionary inversion with comprehension
original = {"a": 1, "b": 2, "c": 3}
inverted = {v: k for k, v in original.items()}
print(f"Inverted dictionary: {inverted}")
# Example: Word frequency counter
def word_frequency_example(text):
"""Count word frequencies using comprehensions"""
# Lowercase and split the text
words = text.lower().split()
# Remove punctuation from words
words = [word.strip(".,!?;:()[]{}\"'") for word in words]
# Count frequencies using a dict comprehension
frequencies = {word: words.count(word) for word in set(words)}
# Sort by frequency (descending)
sorted_words = sorted(frequencies.items(), key=lambda x: x[1], reverse=True)
return dict(sorted_words)
# Interactive Exercises
def exercises():
"""Exercises for advanced comprehensions"""
# Exercise 1: Create a list of tuples containing (number, square, cube)
# for numbers 1-10
print("Exercise 1:")
# Your solution here
# Exercise 2: Given a list of strings, create a dictionary mapping
# each string to its length, but only for strings with length > 3
strings = ["a", "ab", "abc", "abcd", "abcde", "abcdef"]
print("Exercise 2:")
# Your solution here
# Exercise 3: Create a nested dictionary where keys are the first letters
# of words and values are dictionaries mapping words to their lengths
words = ["apple", "banana", "apricot", "cherry", "blueberry", "cantaloupe"]
print("Exercise 3:")
# Your solution here
# Main function
if __name__ == "__main__":
print("Advanced Comprehensions in Python\n")
print("Basic Comprehensions:")
basic_comprehensions()
print()
print("Nested Comprehensions:")
nested_comprehensions()
print()
print("Conditional Comprehensions:")
conditional_comprehensions()
print()
print("Advanced Transformations:")
advanced_transformations()
print()
sample_text = """
Python is a programming language that lets you work quickly and
integrate systems more effectively. Python is powerful and fast,
plays well with others, runs everywhere, is friendly and easy to learn.
Python is developed under an OSI-approved open source license, making it
freely usable and distributable, even for commercial use.
"""
print("Word Frequency Example:")
frequencies = word_frequency_example(sample_text)
for word, count in list(frequencies.items())[:10]: # Top 10 words
print(f" {word}: {count}")
print()
print("Exercises:")
exercises()