forked from commaai/opendbc
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path__init__.py
330 lines (239 loc) · 11.5 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# functions common among cars
import logging
from collections import namedtuple
from dataclasses import dataclass
from enum import IntFlag, ReprEnum, EnumType
from dataclasses import replace, field
from panda import uds
from opendbc.car import structs
from opendbc.car.can_definitions import CanData
from opendbc.car.docs_definitions import CarDocs, OtherCarDocs
from opendbc.car.common.numpy_fast import clip, interp
# set up logging
carlog = logging.getLogger('carlog')
carlog.setLevel(logging.INFO)
carlog.propagate = False
DT_CTRL = 0.01 # car state and control loop timestep (s)
# kg of standard extra cargo to count for drive, gas, etc...
STD_CARGO_KG = 136.
ButtonType = structs.CarState.ButtonEvent.Type
AngleRateLimit = namedtuple('AngleRateLimit', ['speed_bp', 'angle_v'])
def apply_hysteresis(val: float, val_steady: float, hyst_gap: float) -> float:
if val > val_steady + hyst_gap:
val_steady = val - hyst_gap
elif val < val_steady - hyst_gap:
val_steady = val + hyst_gap
return val_steady
def create_button_events(cur_btn: int, prev_btn: int, buttons_dict: dict[int, structs.CarState.ButtonEvent.Type],
unpressed_btn: int = 0) -> list[structs.CarState.ButtonEvent]:
events: list[structs.CarState.ButtonEvent] = []
if cur_btn == prev_btn:
return events
# Add events for button presses, multiple when a button switches without going to unpressed
for pressed, btn in ((False, prev_btn), (True, cur_btn)):
if btn != unpressed_btn:
events.append(structs.CarState.ButtonEvent(pressed=pressed,
type=buttons_dict.get(btn, ButtonType.unknown)))
return events
def gen_empty_fingerprint():
return {i: {} for i in range(8)}
# these params were derived for the Civic and used to calculate params for other cars
class VehicleDynamicsParams:
MASS = 1326. + STD_CARGO_KG
WHEELBASE = 2.70
CENTER_TO_FRONT = WHEELBASE * 0.4
CENTER_TO_REAR = WHEELBASE - CENTER_TO_FRONT
ROTATIONAL_INERTIA = 2500
TIRE_STIFFNESS_FRONT = 192150
TIRE_STIFFNESS_REAR = 202500
# TODO: get actual value, for now starting with reasonable value for
# civic and scaling by mass and wheelbase
def scale_rot_inertia(mass, wheelbase):
return VehicleDynamicsParams.ROTATIONAL_INERTIA * mass * wheelbase ** 2 / (VehicleDynamicsParams.MASS * VehicleDynamicsParams.WHEELBASE ** 2)
# TODO: start from empirically derived lateral slip stiffness for the civic and scale by
# mass and CG position, so all cars will have approximately similar dyn behaviors
def scale_tire_stiffness(mass, wheelbase, center_to_front, tire_stiffness_factor):
center_to_rear = wheelbase - center_to_front
tire_stiffness_front = (VehicleDynamicsParams.TIRE_STIFFNESS_FRONT * tire_stiffness_factor) * mass / VehicleDynamicsParams.MASS * \
(center_to_rear / wheelbase) / (VehicleDynamicsParams.CENTER_TO_REAR / VehicleDynamicsParams.WHEELBASE)
tire_stiffness_rear = (VehicleDynamicsParams.TIRE_STIFFNESS_REAR * tire_stiffness_factor) * mass / VehicleDynamicsParams.MASS * \
(center_to_front / wheelbase) / (VehicleDynamicsParams.CENTER_TO_FRONT / VehicleDynamicsParams.WHEELBASE)
return tire_stiffness_front, tire_stiffness_rear
DbcDict = dict[str, str]
def dbc_dict(pt_dbc, radar_dbc, chassis_dbc=None, body_dbc=None) -> DbcDict:
return {'pt': pt_dbc, 'radar': radar_dbc, 'chassis': chassis_dbc, 'body': body_dbc}
def apply_driver_steer_torque_limits(apply_torque, apply_torque_last, driver_torque, LIMITS):
# limits due to driver torque
driver_max_torque = LIMITS.STEER_MAX + (LIMITS.STEER_DRIVER_ALLOWANCE + driver_torque * LIMITS.STEER_DRIVER_FACTOR) * LIMITS.STEER_DRIVER_MULTIPLIER
driver_min_torque = -LIMITS.STEER_MAX + (-LIMITS.STEER_DRIVER_ALLOWANCE + driver_torque * LIMITS.STEER_DRIVER_FACTOR) * LIMITS.STEER_DRIVER_MULTIPLIER
max_steer_allowed = max(min(LIMITS.STEER_MAX, driver_max_torque), 0)
min_steer_allowed = min(max(-LIMITS.STEER_MAX, driver_min_torque), 0)
apply_torque = clip(apply_torque, min_steer_allowed, max_steer_allowed)
# slow rate if steer torque increases in magnitude
if apply_torque_last > 0:
apply_torque = clip(apply_torque, max(apply_torque_last - LIMITS.STEER_DELTA_DOWN, -LIMITS.STEER_DELTA_UP),
apply_torque_last + LIMITS.STEER_DELTA_UP)
else:
apply_torque = clip(apply_torque, apply_torque_last - LIMITS.STEER_DELTA_UP,
min(apply_torque_last + LIMITS.STEER_DELTA_DOWN, LIMITS.STEER_DELTA_UP))
return int(round(float(apply_torque)))
def apply_dist_to_meas_limits(val, val_last, val_meas,
STEER_DELTA_UP, STEER_DELTA_DOWN,
STEER_ERROR_MAX, STEER_MAX):
# limits due to comparison of commanded val VS measured val (torque/angle/curvature)
max_lim = min(max(val_meas + STEER_ERROR_MAX, STEER_ERROR_MAX), STEER_MAX)
min_lim = max(min(val_meas - STEER_ERROR_MAX, -STEER_ERROR_MAX), -STEER_MAX)
val = clip(val, min_lim, max_lim)
# slow rate if val increases in magnitude
if val_last > 0:
val = clip(val,
max(val_last - STEER_DELTA_DOWN, -STEER_DELTA_UP),
val_last + STEER_DELTA_UP)
else:
val = clip(val,
val_last - STEER_DELTA_UP,
min(val_last + STEER_DELTA_DOWN, STEER_DELTA_UP))
return float(val)
def apply_meas_steer_torque_limits(apply_torque, apply_torque_last, motor_torque, LIMITS):
return int(round(apply_dist_to_meas_limits(apply_torque, apply_torque_last, motor_torque,
LIMITS.STEER_DELTA_UP, LIMITS.STEER_DELTA_DOWN,
LIMITS.STEER_ERROR_MAX, LIMITS.STEER_MAX)))
def apply_std_steer_angle_limits(apply_angle, apply_angle_last, v_ego, LIMITS):
# pick angle rate limits based on wind up/down
steer_up = apply_angle_last * apply_angle >= 0. and abs(apply_angle) > abs(apply_angle_last)
rate_limits = LIMITS.ANGLE_RATE_LIMIT_UP if steer_up else LIMITS.ANGLE_RATE_LIMIT_DOWN
angle_rate_lim = interp(v_ego, rate_limits.speed_bp, rate_limits.angle_v)
return clip(apply_angle, apply_angle_last - angle_rate_lim, apply_angle_last + angle_rate_lim)
def common_fault_avoidance(fault_condition: bool, request: bool, above_limit_frames: int,
max_above_limit_frames: int, max_mismatching_frames: int = 1):
"""
Several cars have the ability to work around their EPS limits by cutting the
request bit of their LKAS message after a certain number of frames above the limit.
"""
# Count up to max_above_limit_frames, at which point we need to cut the request for above_limit_frames to avoid a fault
if request and fault_condition:
above_limit_frames += 1
else:
above_limit_frames = 0
# Once we cut the request bit, count additionally to max_mismatching_frames before setting the request bit high again.
# Some brands do not respect our workaround without multiple messages on the bus, for example
if above_limit_frames > max_above_limit_frames:
request = False
if above_limit_frames >= max_above_limit_frames + max_mismatching_frames:
above_limit_frames = 0
return above_limit_frames, request
def apply_center_deadzone(error, deadzone):
if (error > - deadzone) and (error < deadzone):
error = 0.
return error
def rate_limit(new_value, last_value, dw_step, up_step):
return clip(new_value, last_value + dw_step, last_value + up_step)
def get_friction(lateral_accel_error: float, lateral_accel_deadzone: float, friction_threshold: float,
torque_params: structs.CarParams.LateralTorqueTuning, friction_compensation: bool) -> float:
friction_interp = interp(
apply_center_deadzone(lateral_accel_error, lateral_accel_deadzone),
[-friction_threshold, friction_threshold],
[-torque_params.friction, torque_params.friction]
)
friction = float(friction_interp) if friction_compensation else 0.0
return friction
def make_tester_present_msg(addr, bus, subaddr=None, suppress_response=False):
dat = [0x02, uds.SERVICE_TYPE.TESTER_PRESENT]
if subaddr is not None:
dat.insert(0, subaddr)
dat.append(0x80 if suppress_response else 0x0) # sub-function
dat.extend([0x0] * (8 - len(dat)))
return CanData(addr, bytes(dat), bus)
def get_safety_config(safety_model: structs.CarParams.SafetyModel, safety_param: int = None) -> structs.CarParams.SafetyConfig:
ret = structs.CarParams.SafetyConfig()
ret.safetyModel = safety_model
if safety_param is not None:
ret.safetyParam = safety_param
return ret
class CanBusBase:
offset: int
def __init__(self, CP, fingerprint: dict[int, dict[int, int]] | None) -> None:
if CP is None:
assert fingerprint is not None
num = max([k for k, v in fingerprint.items() if len(v)], default=0) // 4 + 1
else:
num = len(CP.safetyConfigs)
self.offset = 4 * (num - 1)
class CanSignalRateCalculator:
"""
Calculates the instantaneous rate of a CAN signal by using the counter
variable and the known frequency of the CAN message that contains it.
"""
def __init__(self, frequency):
self.frequency = frequency
self.previous_counter = 0
self.previous_value = 0
self.rate = 0
def update(self, current_value, current_counter):
if current_counter != self.previous_counter:
self.rate = (current_value - self.previous_value) * self.frequency
self.previous_counter = current_counter
self.previous_value = current_value
return self.rate
@dataclass(frozen=True, kw_only=True)
class CarSpecs:
mass: float # kg, curb weight
wheelbase: float # meters
steerRatio: float
centerToFrontRatio: float = 0.5
minSteerSpeed: float = 0.0 # m/s
minEnableSpeed: float = -1.0 # m/s
tireStiffnessFactor: float = 1.0
def override(self, **kwargs):
return replace(self, **kwargs)
class Freezable:
_frozen: bool = False
def freeze(self):
if not self._frozen:
self._frozen = True
def __setattr__(self, *args, **kwargs):
if self._frozen:
raise Exception("cannot modify frozen object")
super().__setattr__(*args, **kwargs)
@dataclass(order=True)
class PlatformConfig(Freezable):
car_docs: list[CarDocs]
specs: CarSpecs
dbc_dict: DbcDict
flags: int = 0
platform_str: str | None = None
def __hash__(self) -> int:
return hash(self.platform_str)
def override(self, **kwargs):
return replace(self, **kwargs)
def init(self):
pass
def __post_init__(self):
self.init()
class PlatformsType(EnumType):
def __new__(metacls, cls, bases, classdict, *, boundary=None, _simple=False, **kwds):
for key in classdict._member_names.keys():
cfg: PlatformConfig = classdict[key]
cfg.platform_str = key
cfg.freeze()
return super().__new__(metacls, cls, bases, classdict, boundary=boundary, _simple=_simple, **kwds)
class Platforms(str, ReprEnum, metaclass=PlatformsType):
config: PlatformConfig
def __new__(cls, platform_config: PlatformConfig):
member = str.__new__(cls, platform_config.platform_str)
member.config = platform_config
member._value_ = platform_config.platform_str
return member
def __repr__(self):
return f"<{self.__class__.__name__}.{self.name}>"
@classmethod
def create_dbc_map(cls) -> dict[str, DbcDict]:
return {p: p.config.dbc_dict for p in cls}
@classmethod
def with_flags(cls, flags: IntFlag) -> set['Platforms']:
return {p for p in cls if p.config.flags & flags}
@dataclass(order=True)
class OtherPlatformConfig(PlatformConfig):
car_docs: list[OtherCarDocs]
specs: CarSpecs | None = None
dbc_dict: DbcDict = field(default_factory=lambda: dbc_dict('unknown', None))