forked from boostorg/utility
-
Notifications
You must be signed in to change notification settings - Fork 0
/
operators.htm
2144 lines (1706 loc) · 74.6 KB
/
operators.htm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<meta name="generator" content=
"HTML Tidy for Windows (vers 1st August 2002), see www.w3.org">
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Header <boost/operators.hpp> Documentation</title>
</head>
<body text="black" bgcolor="white" link="blue" vlink="purple" alink="red">
<h1><img src="../../boost.png" alt="boost.png (6897 bytes)" align=
"middle" width="277" height="86">Header <cite><<a href=
"../../boost/operators.hpp">boost/operators.hpp</a>></cite></h1>
<p>The header <cite><<a href=
"../../boost/operators.hpp">boost/operators.hpp</a>></cite> supplies
several sets of class templates (in namespace <code>boost</code>). These
templates define operators at namespace scope in terms of a minimal
number of fundamental operators provided by the class.</p>
<h2><a name="contents">Contents</a></h2>
<ul>
<li><a href="#contents">Contents</a></li>
<li>
<a href="#rationale">Rationale</a>
<ul>
<li><a href="#semantics">Summary of Template Semantics</a></li>
<li><a href="#concepts_note">Use of <i>concepts</i></a></li>
</ul>
</li>
<li>
<a href="#usage">Usage</a>
<ul>
<li>
<a href="#two_arg">Two-Argument Template Forms</a>
<ul>
<li><a href="#two_arg_gen">General Considerations</a></li>
<li><a href="#mixed_arithmetics">Mixed arithmetics</a></li>
</ul>
</li>
<li><a href="#chaining">Base Class Chaining and Object
Size</a></li>
<li><a href="#explicit_instantiation">Separate, Explicit
Instantiation</a></li>
<li><a href="#portability">Requirement Portability</a></li>
</ul>
</li>
<li><a href="#example">Example</a></li>
<li>
<a href="#arithmetic">Arithmetic operators</a>
<ul>
<li>
<a href="#smpl_oprs">Simple Arithmetic Operators</a>
<ul>
<li><a href="#ordering">Ordering Note</a></li>
<li><a href="#symmetry">Symmetry Note</a></li>
</ul>
</li>
<li><a href="#grpd_oprs">Grouped Arithmetic Operators</a></li>
<li><a href="#ex_oprs">Example Templates</a></li>
<li><a href="#a_demo">Arithmetic Operators Demonstration and Test
Program</a></li>
</ul>
</li>
<li>
<a href="#deref">Dereference Operators and Iterator Helpers</a>
<ul>
<li><a href="#dereference">Dereference operators</a></li>
<li><a href="#grpd_iter_oprs">Grouped Iterator Operators</a></li>
<li>
<a href="#iterator">Iterator Helpers</a>
<ul>
<li><a href="#iterator_helpers_notes">Iterator Helper
Notes</a></li>
</ul>
</li>
<li><a href="#i_demo">Iterator Demonstration and Test
Program</a></li>
</ul>
</li>
<li><a href="#contributors">Contributors</a></li>
<li><a href="#old_lib_note">Note for Users of Older Versions</a></li>
</ul>
<h2><a name="rationale">Rationale</a></h2>
<p>Overloaded operators for class types typically occur in groups. If you
can write <code>x + y</code>, you probably also want to be able
to write <code>x += y</code>. If you can write <code>x < y,</code> you
also want <code>x > y, x >= y,</code> and <code>x <= y</code>.
Moreover, unless your class has really surprising behavior, some of these
related operators can be defined in terms of others (e.g. <code>x >= y
<=> !(x < y)</code>). Replicating this boilerplate for multiple
classes is both tedious and error-prone. The <cite><a href=
"../../boost/operators.hpp">boost/operators.hpp</a></cite> templates help
by generating operators for you at namespace scope based on other
operators you've defined in your class.</p>
<p>If, for example, you declare a class like this:</p>
<blockquote>
<pre>
class MyInt
: boost::operators<MyInt>
{
bool operator<(const MyInt& x) const;
bool operator==(const MyInt& x) const;
MyInt& operator+=(const MyInt& x);
MyInt& operator-=(const MyInt& x);
MyInt& operator*=(const MyInt& x);
MyInt& operator/=(const MyInt& x);
MyInt& operator%=(const MyInt& x);
MyInt& operator|=(const MyInt& x);
MyInt& operator&=(const MyInt& x);
MyInt& operator^=(const MyInt& x);
MyInt& operator++();
MyInt& operator--();
};
</pre>
</blockquote>
<p>then the <code><a href="#operators1">operators<></a></code>
template adds more than a dozen additional operators, such as
<code>operator></code>, <code><=</code>, <code>>=</code>, and
(binary) <code>+</code>. <a href="#two_arg">Two-argument forms</a> of the
templates are also provided to allow interaction with other types.</p>
<h3>Summary of Template <a name="semantics">Semantics</a></h3>
<ol>
<li>Each operator template completes the concept(s) it describes by
defining overloaded operators for its target class.</li>
<li>The name of an operator class template indicates the <a href=
"#concepts_note">concept</a> that its target class will model.</li>
<li>Usually, the target class uses an instantation of the operator
class template as a base class. Some operator templates support an <a
href="#explicit_instantiation">alternate method</a>.</li>
<li>The concept can be compound, <i>i.e.</i> it may represent a common
combination of other, simpler concepts.</li>
<li>Most operator templates require their target class to support
operations related to the operators supplied by the template. In
accordance with widely accepted <a href=
"http://www.gotw.ca/gotw/004.htm">coding style recommendations</a>, the
target class is often required to supply the assignment counterpart
operator of the concept's "main operator." For example, the
<code>addable</code> template requires <code>operator+=(T
const&)</code> and in turn supplies <code>operator+(T const&, T
const&)</code>.</li>
</ol>
<h3>Use of <i><a name="concepts_note">concepts</a></i></h3>
<p>The discussed concepts are not necessarily the standard library's
concepts (CopyConstructible, <i>etc.</i>), although some of them could
be; they are what we call <i>concepts with a small 'c'</i>. In
particular, they are different from the former ones in that they <em>do
not</em> describe precise semantics of the operators they require to be
defined, except the requirements that (a) the semantics of the operators
grouped in one concept should be consistent (<i>e.g.</i> effects of
evaluating of <code>a += b</code> and
<code>a = a + b</code> expressions should be the
same), and (b) that the return types of the operators should follow
semantics of return types of corresponding operators for built-in types
(<i>e.g.</i> <code>operator<</code> should return a type convertible
to <code>bool</code>, and <code>T::operator-=</code> should return type
convertible to <code>T</code>). Such "loose" requirements make operators
library applicable to broader set of target classes from different
domains, <i>i.e.</i> eventually more useful.</p>
<h2><a name="usage">Usage</a></h2>
<h3><a name="two_arg">Two-Argument</a> Template Forms</h3>
<h4><a name="two_arg_gen">General Considerations</a></h4>
<p>The arguments to a binary operator commonly have identical types, but
it is not unusual to want to define operators which combine different
types. For <a href="#example">example</a>, one might want to multiply a
mathematical vector by a scalar. The two-argument template forms of the
arithmetic operator templates are supplied for this purpose. When
applying the two-argument form of a template, the desired return type of
the operators typically determines which of the two types in question
should be derived from the operator template. For example, if the result
of <code>T + U</code> is of type <code>T</code>, then
<code>T</code> (not <code>U</code>) should be derived from <code><a href=
"#addable2">addable<T, U></a></code>. The comparison templates
(<code><a href="#less_than_comparable2">less_than_comparable<T,
U></a></code>, <code><a href=
"#equality_comparable2">equality_comparable<T, U></a></code>,
<code><a href="#equivalent2">equivalent<T, U></a></code>, and
<code><a href="#partially_ordered2">partially_ordered<T,
U></a></code>) are exceptions to this guideline, since the return type
of the operators they define is <code>bool</code>.</p>
<p>On compilers which do not support partial specialization, the
two-argument forms must be specified by using the names shown below with
the trailing <code>'2'</code>. The single-argument forms with the
trailing <code>'1'</code> are provided for symmetry and to enable certain
applications of the <a href="#chaining">base class chaining</a>
technique.</p>
<h4><a name="mixed_arithmetics">Mixed Arithmetics</a></h4>
<p>Another application of the two-argument template forms is for mixed
arithmetics between a type <code>T</code> and a type <code>U</code> that
is convertible to <code>T</code>. In this case there are two ways where
the two-argument template forms are helpful: one is to provide the
respective signatures for operator overloading, the second is
performance.</p>
<p>With respect to the operator overloading assume <i>e.g.</i> that
<code>U</code> is <code>int</code>, that <code>T</code> is an
user-defined unlimited integer type, and that <code>double
operator-(double, const T&)</code> exists. If one wants to compute
<code>int - T</code> and does not provide <code>T operator-(int, const
T&)</code>, the compiler will consider <code>double operator-(double,
const T&)</code> to be a better match than <code>T operator-(const
T&, const T&)</code>, which will probably be different from the
user's intention. To define a complete set of operator signatures,
additional 'left' forms of the two-argument template forms are provided
(<code><a href="#subtractable2_left">subtractable2_left<T,
U></a></code>, <code><a href="#dividable2_left">dividable2_left<T,
U></a></code>, <code><a href="#modable2_left">modable2_left<T,
U></a></code>) that define the signatures for non-commutative
operators where <code>U</code> appears on the left hand side
(<code>operator-(const U&, const T&)</code>,
<code>operator/(const U&, const T&)</code>, <code>operator%(const
U&, const T&)</code>).</p>
<p>With respect to the performance observe that when one uses the single
type binary operator for mixed type arithmetics, the type <code>U</code>
argument has to be converted to type <code>T</code>. In practice,
however, there are often more efficient implementations of, say
<code>T::operator-=(const U&)</code> that avoid unnecessary
conversions from <code>U</code> to <code>T</code>. The two-argument
template forms of the arithmetic operator create additional operator
interfaces that use these more efficient implementations. There is,
however, no performance gain in the 'left' forms: they still need a
conversion from <code>U</code> to <code>T</code> and have an
implementation equivalent to the code that would be automatically created
by the compiler if it considered the single type binary operator to be
the best match.</p>
<h3>Base Class <a name="chaining">Chaining</a> and Object Size</h3>
<p>Every operator class template, except the <a href=
"#ex_oprs">arithmetic examples</a> and the <a href="#iterator">iterator
helpers</a>, has an additional, but optional, template type parameter
<code>B</code>. This parameter will be a publicly-derived base class of
the instantiated template. This means it must be a class type. It can be
used to avoid the bloating of object sizes that is commonly associated
with multiple-inheritance from several empty base classes (see the <a
href="#old_lib_note">note for users of older versions</a> for more
details). To provide support for a group of operators, use the
<code>B</code> parameter to chain operator templates into a single-base
class hierarchy, demostrated in the <a href="#example">usage example</a>.
The technique is also used by the composite operator templates to group
operator definitions. If a chain becomes too long for the compiler to
support, try replacing some of the operator templates with a single
grouped operator template that chains the old templates together; the
length limit only applies to the number of templates directly in the
chain, not those hidden in group templates.</p>
<p><strong>Caveat:</strong> to chain to a base class which is
<em>not</em> a Boost operator template when using the <a href=
"#two_arg">single-argument form</a> of a Boost operator template, you
must specify the operator template with the trailing <code>'1'</code> in
its name. Otherwise the library will assume you mean to define a binary
operation combining the class you intend to use as a base class and the
class you're deriving.</p>
<h3>Separate, <a name="explicit_instantiation">Explicit
Instantiation</a></h3>
<p>On some compilers (<i>e.g.</i> Borland, GCC) even single-inheritance
seems to cause an increase in object size in some cases. If you are not
defining a class template, you may get better object-size performance by
avoiding derivation altogether, and instead explicitly instantiating the
operator template as follows:</p>
<blockquote>
<pre>
class myclass // lose the inheritance...
{
//...
};
// explicitly instantiate the operators I need.
template struct less_than_comparable<myclass>;
template struct equality_comparable<myclass>;
template struct incrementable<myclass>;
template struct decrementable<myclass>;
template struct addable<myclass,long>;
template struct subtractable<myclass,long>;
</pre>
</blockquote>
<p>Note that some operator templates cannot use this workaround and must
be a base class of their primary operand type. Those templates define
operators which must be member functions, and the workaround needs the
operators to be independent friend functions. The relevant templates
are:</p>
<ul>
<li><code><a href=
"#dereferenceable">dereferenceable<></a></code></li>
<li><code><a href="#indexable">indexable<></a></code></li>
<li>Any composite operator template that includes at least one of the
above</li>
</ul>
<p>As Daniel Krügler pointed out, this technique violates 14.6.5/2
and is thus non-portable. The reasoning is, that the operators injected
by the instantiation of e.g.
<code>less_than_comparable<myclass></code> can not be found
by ADL according to the rules given by 3.4.2/2, since myclass is
not an associated class of
<code>less_than_comparable<myclass></code>.
Thus only use this technique if all else fails.</p>
<h3>Requirement <a name="portability">Portability</a></h3>
<p>Many compilers (<i>e.g.</i> MSVC 6.3, GCC 2.95.2) will not enforce the
requirements in the operator template tables unless the operations which
depend on them are actually used. This is not standard-conforming
behavior. In particular, although it would be convenient to derive all
your classes which need binary operators from the <code><a href=
"#operators1">operators<></a></code> and <code><a href=
"#operators2">operators2<></a></code> templates, regardless of
whether they implement all the requirements of those templates, this
shortcut is not portable. Even if this currently works with your
compiler, it may not work later.</p>
<h2><a name="example">Example</a></h2>
<p>This example shows how some of the <a href="#arithmetic">arithmetic
operator templates</a> can be used with a geometric point class
(template).</p>
<pre>
template <class T>
class point // note: private inheritance is OK here!
: boost::addable< point<T> // point + point
, boost::subtractable< point<T> // point - point
, boost::dividable2< point<T>, T // point / T
, boost::multipliable2< point<T>, T // point * T, T * point
> > > >
{
public:
point(T, T);
T x() const;
T y() const;
point operator+=(const point&);
// point operator+(point, const point&) automatically
// generated by addable.
point operator-=(const point&);
// point operator-(point, const point&) automatically
// generated by subtractable.
point operator*=(T);
// point operator*(point, const T&) and
// point operator*(const T&, point) auto-generated
// by multipliable.
point operator/=(T);
// point operator/(point, const T&) auto-generated
// by dividable.
private:
T x_;
T y_;
};
// now use the point<> class:
template <class T>
T length(const point<T> p)
{
return sqrt(p.x()*p.x() + p.y()*p.y());
}
const point<float> right(0, 1);
const point<float> up(1, 0);
const point<float> pi_over_4 = up + right;
const point<float> pi_over_4_normalized = pi_over_4 / length(pi_over_4);
</pre>
<h2><a name="arithmetic">Arithmetic</a> Operators</h2>
<p>The arithmetic operator templates ease the task of creating a custom
numeric type. Given a core set of operators, the templates add related
operators to the numeric class. These operations are like the ones the
standard arithmetic types have, and may include comparisons, adding,
incrementing, logical and bitwise manipulations, <i>etc</i>. Further,
since most numeric types need more than one of these operators, some
templates are provided to combine several of the basic operator templates
in one declaration.</p>
<p>The requirements for the types used to instantiate the simple operator
templates are specified in terms of expressions which must be valid and
the expression's return type. The composite operator templates only list
what other templates they use. The supplied operations and requirements
of the composite operator templates can be inferred from the operations
and requirements of the listed components.</p>
<h3><a name="smpl_oprs">Simple Arithmetic Operators</a></h3>
<p>These templates are "simple" since they provide operators based on a
single operation the base type has to provide. They have an additional
optional template parameter <code>B</code>, which is not shown, for the
<a href="#chaining">base class chaining</a> technique.</p>
<p>The primary operand type <code>T</code> needs to be of class type,
built-in types are not supported.</p>
<table cellpadding="5" border="1" align="center">
<caption>
Simple Arithmetic Operator Template Classes
</caption>
<tr>
<td colspan="3">
<table align="center" border="1">
<caption>
<em>Key</em>
</caption>
<tr>
<td><code>T</code>: primary operand type</td>
<td><code>U</code>: alternate operand type</td>
</tr>
<tr>
<td><code>t</code>, <code>t1</code>: values of type
<code>T</code></td>
<td><code>u</code>: value of type <code>U</code></td>
</tr>
</table>
</td>
</tr>
<tr>
<th>Template</th>
<th>Supplied Operations</th>
<th>Requirements</th>
</tr>
<tr>
<td><code><a name=
"less_than_comparable1">less_than_comparable<T></a></code><br>
<code>less_than_comparable1<T></code></td>
<td><code>bool operator>(const T&, const T&)</code><br>
<code>bool operator<=(const T&, const T&)</code><br>
<code>bool operator>=(const T&, const T&)</code></td>
<td><code>t < t1</code>.<br>
Return convertible to <code>bool</code>. See the <a href=
"#ordering">Ordering Note</a>.</td>
</tr>
<tr>
<td><code><a name="less_than_comparable2">less_than_comparable<T,
U></a></code><br>
<code>less_than_comparable2<T, U></code></td>
<td><code>bool operator<=(const T&, const U&)</code><br>
<code>bool operator>=(const T&, const U&)</code><br>
<code>bool operator>(const U&, const T&)</code><br>
<code>bool operator<(const U&, const T&)</code><br>
<code>bool operator<=(const U&, const T&)</code><br>
<code>bool operator>=(const U&, const T&)</code></td>
<td><code>t < u</code>. <code>t > u</code>.<br>
Returns convertible to <code>bool</code>. See the <a href=
"#ordering">Ordering Note</a>.</td>
</tr>
<tr>
<td><code><a name=
"equality_comparable1">equality_comparable<T></a></code><br>
<code>equality_comparable1<T></code></td>
<td><code>bool operator!=(const T&, const T&)</code></td>
<td><code>t == t1</code>.<br>
Return convertible to <code>bool</code>.</td>
</tr>
<tr>
<td><code><a name="equality_comparable2">equality_comparable<T,
U></a></code><br>
<code>equality_comparable2<T, U></code></td>
<td><code>bool operator==(const U&, const T&)</code><br>
<code>bool operator!=(const U&, const T&)</code><br>
<code>bool operator!=(const T&, const U&)</code></td>
<td><code>t == u</code>.<br>
Return convertible to <code>bool</code>.</td>
</tr>
<tr>
<td><code><a name="addable1">addable<T></a></code><br>
<code>addable1<T></code></td>
<td><code>T operator+(const T&, const T&)</code></td>
<td><code>T temp(t); temp += t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="addable2">addable<T, U></a></code><br>
<code>addable2<T, U></code></td>
<td><code>T operator+(const T&, const U&)</code><br>
<code>T operator+(const U&, const T& )</code></td>
<td><code>T temp(t); temp += u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name=
"subtractable1">subtractable<T></a></code><br>
<code>subtractable1<T></code></td>
<td><code>T operator-(const T&, const T&)</code></td>
<td><code>T temp(t); temp -= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="subtractable2">subtractable<T,
U></a></code><br>
<code>subtractable2<T, U></code></td>
<td><code>T operator-(const T&, const U&)</code></td>
<td><code>T temp(t); temp -= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="subtractable2_left">subtractable2_left<T,
U></a></code></td>
<td><code>T operator-(const U&, const T&)</code></td>
<td><code>T temp(u); temp -= t</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name=
"multipliable1">multipliable<T></a></code><br>
<code>multipliable1<T></code></td>
<td><code>T operator*(const T&, const T&)</code></td>
<td><code>T temp(t); temp *= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="multipliable2">multipliable<T,
U></a></code><br>
<code>multipliable2<T, U></code></td>
<td><code>T operator*(const T&, const U&)</code><br>
<code>T operator*(const U&, const T&)</code></td>
<td><code>T temp(t); temp *= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="dividable1">dividable<T></a></code><br>
<code>dividable1<T></code></td>
<td><code>T operator/(const T&, const T&)</code></td>
<td><code>T temp(t); temp /= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="dividable2">dividable<T, U></a></code><br>
<code>dividable2<T, U></code></td>
<td><code>T operator/(const T&, const U&)</code></td>
<td><code>T temp(t); temp /= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="dividable2_left">dividable2_left<T,
U></a></code></td>
<td><code>T operator/(const U&, const T&)</code></td>
<td><code>T temp(u); temp /= t</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="modable1">modable<T></a></code><br>
<code>modable1<T></code></td>
<td><code>T operator%(const T&, const T&)</code></td>
<td><code>T temp(t); temp %= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="modable2">modable<T, U></a></code><br>
<code>modable2<T, U></code></td>
<td><code>T operator%(const T&, const U&)</code></td>
<td><code>T temp(t); temp %= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="modable2_left">modable2_left<T,
U></a></code></td>
<td><code>T operator%(const U&, const T&)</code></td>
<td><code>T temp(u); temp %= t</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="orable1">orable<T></a></code><br>
<code>orable1<T></code></td>
<td><code>T operator|(const T&, const T&)</code></td>
<td><code>T temp(t); temp |= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="orable2">orable<T, U></a></code><br>
<code>orable2<T, U></code></td>
<td><code>T operator|(const T&, const U&)</code><br>
<code>T operator|(const U&, const T&)</code></td>
<td><code>T temp(t); temp |= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="andable1">andable<T></a></code><br>
<code>andable1<T></code></td>
<td><code>T operator&(const T&, const T&)</code></td>
<td><code>T temp(t); temp &= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="andable2">andable<T, U></a></code><br>
<code>andable2<T, U></code></td>
<td><code>T operator&(const T&, const U&)</code><br>
<code>T operator&(const U&, const T&)</code></td>
<td><code>T temp(t); temp &= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="xorable1">xorable<T></a></code><br>
<code>xorable1<T></code></td>
<td><code>T operator^(const T&, const T&)</code></td>
<td><code>T temp(t); temp ^= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="xorable2">xorable<T, U></a></code><br>
<code>xorable2<T, U></code></td>
<td><code>T operator^(const T&, const U&)</code><br>
<code>T operator^(const U&, const T&)</code></td>
<td><code>T temp(t); temp ^= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name=
"incrementable">incrementable<T></a></code></td>
<td><code>T operator++(T&, int)</code></td>
<td><code>T temp(t); ++t</code><br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name=
"decrementable">decrementable<T></a></code></td>
<td><code>T operator--(T&, int)</code></td>
<td><code>T temp(t); --t;</code><br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name=
"left_shiftable1">left_shiftable<T></a></code><br>
<code>left_shiftable1<T></code></td>
<td><code>T operator<<(const T&, const T&)</code></td>
<td><code>T temp(t); temp <<= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="left_shiftable2">left_shiftable<T,
U></a></code><br>
<code>left_shiftable2<T, U></code></td>
<td><code>T operator<<(const T&, const U&)</code></td>
<td><code>T temp(t); temp <<= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name=
"right_shiftable1">right_shiftable<T></a></code><br>
<code>right_shiftable1<T></code></td>
<td><code>T operator>>(const T&, const T&)</code></td>
<td><code>T temp(t); temp >>= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="right_shiftable2">right_shiftable<T,
U></a></code><br>
<code>right_shiftable2<T, U></code></td>
<td><code>T operator>>(const T&, const U&)</code></td>
<td><code>T temp(t); temp >>= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="equivalent1">equivalent<T></a></code><br>
<code>equivalent1<T></code></td>
<td><code>bool operator==(const T&, const T&)</code></td>
<td><code>t < t1</code>.<br>
Return convertible to <code>bool</code>. See the <a href=
"#ordering">Ordering Note</a>.</td>
</tr>
<tr>
<td><code><a name="equivalent2">equivalent<T, U></a></code><br>
<code>equivalent2<T, U></code></td>
<td><code>bool operator==(const T&, const U&)</code></td>
<td><code>t < u</code>. <code>t > u</code>.<br>
Returns convertible to <code>bool</code>. See the <a href=
"#ordering">Ordering Note</a>.</td>
</tr>
<tr>
<td><code><a name=
"partially_ordered1">partially_ordered<T></a></code><br>
<code>partially_ordered1<T></code></td>
<td><code>bool operator>(const T&, const T&)</code><br>
<code>bool operator<=(const T&, const T&)</code><br>
<code>bool operator>=(const T&, const T&)</code></td>
<td><code>t < t1</code>. <code>t == t1</code>.<br>
Returns convertible to <code>bool</code>. See the <a href=
"#ordering">Ordering Note</a>.</td>
</tr>
<tr>
<td><code><a name="partially_ordered2">partially_ordered<T,
U></a></code><br>
<code>partially_ordered2<T, U></code></td>
<td><code>bool operator<=(const T&, const U&)</code><br>
<code>bool operator>=(const T&, const U&)</code><br>
<code>bool operator>(const U&, const T&)</code><br>
<code>bool operator<(const U&, const T&)</code><br>
<code>bool operator<=(const U&, const T&)</code><br>
<code>bool operator>=(const U&, const T&)</code></td>
<td><code>t < u</code>. <code>t > u</code>. <code>t ==
u</code>.<br>
Returns convertible to <code>bool</code>. See the <a href=
"#ordering">Ordering Note</a>.</td>
</tr>
</table>
<h4><a name="ordering">Ordering</a> Note</h4>
<p>The <code><a href=
"#less_than_comparable1">less_than_comparable<T></a></code> and
<code><a href="#partially_ordered1">partially_ordered<T></a></code>
templates provide the same set of operations. However, the workings of
<code><a href=
"#less_than_comparable1">less_than_comparable<T></a></code> assume
that all values of type <code>T</code> can be placed in a total order. If
that is not true (<i>e.g.</i> Not-a-Number values in IEEE floating point
arithmetic), then <code><a href=
"#partially_ordered1">partially_ordered<T></a></code> should be
used. The <code><a href=
"#partially_ordered1">partially_ordered<T></a></code> template can
be used for a totally-ordered type, but it is not as efficient as
<code><a href=
"#less_than_comparable1">less_than_comparable<T></a></code>. This
rule also applies for <code><a href=
"#less_than_comparable2">less_than_comparable<T, U></a></code> and
<code><a href="#partially_ordered2">partially_ordered<T,
U></a></code> with respect to the ordering of all <code>T</code> and
<code>U</code> values, and for both versions of <code><a href=
"#equivalent1">equivalent<></a></code>. The solution for <code><a
href="#equivalent1">equivalent<></a></code> is to write a custom
<code>operator==</code> for the target class.</p>
<h4><a name="symmetry">Symmetry</a> Note</h4>
<p>Before talking about symmetry, we need to talk about optimizations to
understand the reasons for the different implementation styles of
operators. Let's have a look at <code>operator+</code> for a class
<code>T</code> as an example:</p>
<pre>
T operator+( const T& lhs, const T& rhs )
{
return T( lhs ) += rhs;
}
</pre>
This would be a normal implementation of <code>operator+</code>, but it
is not an efficient one. An unnamed local copy of <code>lhs</code> is
created, <code>operator+=</code> is called on it and it is copied to the
function return value (which is another unnamed object of type
<code>T</code>). The standard doesn't generally allow the intermediate
object to be optimized away:
<blockquote>
3.7.2/2: Automatic storage duration<br>
<br>
If a named automatic object has initialization or a destructor with
side effects, it shall not be destroyed before the end of its block,
nor shall it be eliminated as an optimization even if it appears to be
unused, except that a class object or its copy may be eliminated as
specified in 12.8.
</blockquote>
The reference to 12.8 is important for us:
<blockquote>
12.8/15: Copying class objects<br>
...<br>
For a function with a class return type, if the expression in the
return statement is the name of a local object, and the cv-unqualified
type of the local object is the same as the function return type, an
implementation is permitted to omit creating the temporary object to
hold the function return value, even if the class copy constructor or
destructor has side effects.
</blockquote>
This optimization is known as the named return value optimization (NRVO),
which leads us to the following implementation for
<code>operator+</code>:
<pre>
T operator+( const T& lhs, const T& rhs )
{
T nrv( lhs );
nrv += rhs;
return nrv;
}
</pre>
Given this implementation, the compiler is allowed to remove the
intermediate object. Sadly, not all compiler implement the NRVO, some
even implement it in an incorrect way which makes it useless here.
Without the NRVO, the NRVO-friendly code is no worse than the original
code showed above, but there is another possible implementation, which
has some very special properties:
<pre>
T operator+( T lhs, const T& rhs )
{
return lhs += rhs;
}
</pre>
The difference to the first implementation is that <code>lhs</code> is
not taken as a constant reference used to create a copy; instead,
<code>lhs</code> is a by-value parameter, thus it is already the copy
needed. This allows another optimization (12.2/2) for some cases.
Consider <code>a + b + c</code> where the result of
<code>a + b</code> is not copied when used as <code>lhs</code>
when adding <code>c</code>. This is more efficient than the original
code, but not as efficient as a compiler using the NRVO. For most people,
it is still preferable for compilers that don't implement the NRVO, but
the <code>operator+</code> now has a different function signature. Also,
the number of objects created differs for
<code>(a + b ) + c</code> and
<code>a + ( b + c )</code>. Most probably,
this won't be a problem for you, but if your code relies on the function
signature or a strict symmetric behaviour, you should set
<code>BOOST_FORCE_SYMMETRIC_OPERATORS</code> in your user-config. This
will force the NRVO-friendly implementation to be used even for compilers
that don't implement the NRVO. <br>
<br>
<h3><a name="grpd_oprs">Grouped Arithmetic Operators</a></h3>
<p>The following templates provide common groups of related operations.
For example, since a type which is addable is usually also subractable,
the <code><a href="#additive1">additive</a></code> template provides the
combined operators of both. The grouped operator templates have an
additional optional template parameter <code>B</code>, which is not
shown, for the <a href="#chaining">base class chaining</a> technique.</p>
<table cellpadding="5" border="1" align="center">
<caption>
Grouped Arithmetic Operator Template Classes