|
| 1 | +// TODO: @overloading |
| 2 | +#foreign llvm #callconv "c" { |
| 3 | + |
| 4 | + pow :: fn(x, power: f32) -> f32 #linkname "llvm.pow.f32" |
| 5 | +// pow :: fn(x, power: f64) -> f64 #linkname "llvm.pow.f64" |
| 6 | + |
| 7 | +// pow :: fn(x: f32, power: i32) -> f32 #linkname "llvm.powi.f32" |
| 8 | +// pow :: fn(x: f64, power: i32) -> f32 #linkname "llvm.powi.f64" |
| 9 | + |
| 10 | + sqrt :: fn(x: f32) -> f32 #linkname "llvm.sqrt.f32" |
| 11 | +// sqrt :: fn(x: f64) -> f64 #linkname "llvm.sqrt.f64" |
| 12 | + |
| 13 | + exp :: fn(x: f32) -> f32 #linkname "llvm.exp.f32" |
| 14 | +// exp :: fn(x: f64) -> f64 #linkname "llvm.exp.f64" |
| 15 | + |
| 16 | + exp2 :: fn(x: f32) -> f32 #linkname "llvm.exp2.f32" |
| 17 | +// exp2 :: fn(x: f64) -> f64 #linkname "llvm.exp2.f64" |
| 18 | + |
| 19 | + log :: fn(x: f32) -> f32 #linkname "llvm.log.f32" |
| 20 | +// log :: fn(x: f64) -> f64 #linkname "llvm.log.f64" |
| 21 | + |
| 22 | + log10 :: fn(x: f32) -> f32 #linkname "llvm.log10.f32" |
| 23 | +// log10 :: fn(x: f64) -> f64 #linkname "llvm.log10.f64" |
| 24 | + |
| 25 | + log2 :: fn(x: f32) -> f32 #linkname "llvm.log2.f32" |
| 26 | +// log2 :: fn(x: f64) -> f64 #linkname "llvm.log2.f64" |
| 27 | + |
| 28 | + sin :: fn(x: f32) -> f32 #linkname "llvm.sin.f32" |
| 29 | +// sin :: fn(x: f64) -> f64 #linkname "llvm.sin.f64" |
| 30 | + |
| 31 | + cos :: fn(x: f32) -> f32 #linkname "llvm.cos.f32" |
| 32 | +// cos :: fn(x: f64) -> f64 #linkname "llvm.cos.f64" |
| 33 | + |
| 34 | + fma :: fn(a, b, c: f32) -> f32 #linkname "llvm.fma.f32" |
| 35 | +// fma :: fn(a, b, c: f64) -> f64 #linkname "llvm.fma.f64" |
| 36 | + |
| 37 | + fabs :: fn(x: f32) -> f32 #linkname "llvm.fabs.f32" |
| 38 | +// fabs :: fn(x: f64) -> f64 #linkname "llvm.fabs.f64" |
| 39 | + |
| 40 | + min :: fn(x: f32) -> f32 #linkname "llvm.minnum.f32" |
| 41 | +// min :: fn(x: f64) -> f64 #linkname "llvm.minnum.f64" |
| 42 | + |
| 43 | + max :: fn(x: f32) -> f32 #linkname "llvm.maxnum.f32" |
| 44 | +// max :: fn(x: f64) -> f64 #linkname "llvm.maxnum.f64" |
| 45 | + |
| 46 | + sign :: fn(x: f32) -> f32 #linkname "llvm.copysign.f32" |
| 47 | +// sign :: fn(x: f64) -> f64 #linkname "llvm.copysign.f64" |
| 48 | + |
| 49 | + floor :: fn(x: f32) -> f32 #linkname "llvm.floor.f32" |
| 50 | +// floor :: fn(x: f64) -> f64 #linkname "llvm.floor.f64" |
| 51 | + |
| 52 | + ceil :: fn(x: f32) -> f32 #linkname "llvm.ceil.f32" |
| 53 | +// ceil :: fn(x: f64) -> f64 #linkname "llvm.ceil.f64" |
| 54 | + |
| 55 | + trunc :: fn(x: f32) -> f32 #linkname "llvm.trunc.f32" |
| 56 | +// trunc :: fn(x: f64) -> f64 #linkname "llvm.trunc.f64" |
| 57 | + |
| 58 | + rint :: fn(x: f32) -> f32 #linkname "llvm.rint.f32" |
| 59 | +// rint :: fn(x: f64) -> f64 #linkname "llvm.rint.f64" |
| 60 | + |
| 61 | + nearbyint :: fn(x: f32) -> f32 #linkname "llvm.nearbyint.f32" |
| 62 | +// nearbyint :: fn(x: f64) -> f64 #linkname "llvm.nearbyint.f64" |
| 63 | + |
| 64 | + round :: fn(x: f32) -> f32 #linkname "llvm.round.f32" |
| 65 | +// round :: fn(x: f64) -> f64 #linkname "llvm.round.f64" |
| 66 | + |
| 67 | + // MARK: Specialized Arithmetic Intrinsics |
| 68 | + |
| 69 | + canonicalize :: fn(f32) -> f32 #linkname "llvm.canonicalize.f32" |
| 70 | +// canonicalize :: fn(f64) -> f64 #linkname "llvm.canonicalize.f64" |
| 71 | + |
| 72 | + fmuladd32 :: fn(a, b, c: f32) -> f32 #linkname "llvm.fmuladd.f32" |
| 73 | +// fmuladd64 :: fn(a, b, c: f64) -> f64 #linkname "llvm.fmuladd.f64" |
| 74 | + |
| 75 | + // TODO: Arithmetic with Overflow Intrinsics |
| 76 | +} |
| 77 | + |
| 78 | +tau :: 6.28318530717958647692528676655900576 |
| 79 | +pi :: 3.14159265358979323846264338327950288 |
| 80 | + |
| 81 | +e :: 2.71828182845904523536 |
| 82 | + |
| 83 | +epsilon :: 1.19209290e-7 |
| 84 | + |
| 85 | +Vec3 :: #vector(3)f32 |
| 86 | +Vec4 :: #vector(4)f32 |
| 87 | +Mat4 :: [4][4]f32 |
| 88 | + |
| 89 | +tan :: fn(x: f32) -> f32 { return sin(x) / cos(x) } |
| 90 | + |
| 91 | +dot :: fn(a, b: Vec3) -> f32 { |
| 92 | + c := a * b |
| 93 | + return c.x + c.y + c.z |
| 94 | +} |
| 95 | + |
| 96 | +dot_4 :: fn(a, b: Vec4) -> f32 { |
| 97 | + c := a * b |
| 98 | + return c.x + c.y + c.z + c.w |
| 99 | +} |
| 100 | + |
| 101 | +mag :: fn(v: Vec3) -> f32 { |
| 102 | + return sqrt(dot(v, v)) |
| 103 | +} |
| 104 | + |
| 105 | +mag_4 :: fn(v: Vec4) -> f32 { |
| 106 | + return sqrt(dot_4(v, v)) |
| 107 | +} |
| 108 | + |
| 109 | +norm :: fn(v: Vec3) -> Vec3 { |
| 110 | + m := mag(v) |
| 111 | + mv := Vec3 { m, m, m } |
| 112 | + return v / mv |
| 113 | +} |
| 114 | + |
| 115 | +norm_4 :: fn(v: Vec4) -> Vec4 { |
| 116 | + m := mag_4(v) |
| 117 | + mv := Vec4 { m, m, m, m } |
| 118 | + return v / mv |
| 119 | +} |
| 120 | + |
| 121 | +cross :: fn(x, y: Vec3) -> Vec3 { |
| 122 | + a := x.yzx * y.zxy |
| 123 | + b := x.zxy * y.yzx |
| 124 | + return a - b |
| 125 | +} |
| 126 | + |
| 127 | +identity_mat :: fn() -> Mat4 { |
| 128 | + return Mat4 { |
| 129 | + {1, 0, 0, 0}, |
| 130 | + {0, 1, 0, 0}, |
| 131 | + {0, 0, 1, 0}, |
| 132 | + {0, 0, 0, 1} |
| 133 | + } |
| 134 | +} |
| 135 | + |
| 136 | +transpose :: fn(m: Mat4) -> Mat4 { |
| 137 | + for j := 0; j < 4; j += 1 { |
| 138 | + for i := 0; i < 4; i += 1 { |
| 139 | + m[i][j], m[j][i] = m[j][i], m[i][j] |
| 140 | + } |
| 141 | + } |
| 142 | + return m |
| 143 | +} |
| 144 | + |
| 145 | +mul :: fn(a,b: Mat4) -> Mat4 { |
| 146 | + c: Mat4 |
| 147 | + for j := 0; j < 4; j += 1 { |
| 148 | + for i := 0; i < 4; i += 1 { |
| 149 | + c[j][i] = a[0][i] * b[j][0] + |
| 150 | + a[1][i] * b[j][1] + |
| 151 | + a[2][i] * b[j][2] + |
| 152 | + a[3][i] * b[j][3] |
| 153 | + } |
| 154 | + } |
| 155 | + return c |
| 156 | +} |
| 157 | + |
| 158 | +inverse :: fn(m: Mat4) -> Mat4 { |
| 159 | + o: Mat4 |
| 160 | + |
| 161 | + sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3] |
| 162 | + sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3] |
| 163 | + sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2] |
| 164 | + sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3] |
| 165 | + sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2] |
| 166 | + sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1] |
| 167 | + sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3] |
| 168 | + sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3] |
| 169 | + sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2] |
| 170 | + sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3] |
| 171 | + sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2] |
| 172 | + sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3] |
| 173 | + sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1] |
| 174 | + sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3] |
| 175 | + sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3] |
| 176 | + sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2] |
| 177 | + sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3] |
| 178 | + sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2] |
| 179 | + sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1] |
| 180 | + |
| 181 | + o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02) |
| 182 | + o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04) |
| 183 | + o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05) |
| 184 | + o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05) |
| 185 | + o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02) |
| 186 | + o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04) |
| 187 | + o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05) |
| 188 | + o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05) |
| 189 | + o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08) |
| 190 | + o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10) |
| 191 | + o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12) |
| 192 | + o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12) |
| 193 | + o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15) |
| 194 | + o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17) |
| 195 | + o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18) |
| 196 | + o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18) |
| 197 | + |
| 198 | + ood := 1.0 / (m[0][0] * o[0][0] + |
| 199 | + m[0][1] * o[0][1] + |
| 200 | + m[0][2] * o[0][2] + |
| 201 | + m[0][3] * o[0][3]) |
| 202 | + |
| 203 | + o[0][0] *= ood |
| 204 | + o[0][1] *= ood |
| 205 | + o[0][2] *= ood |
| 206 | + o[0][3] *= ood |
| 207 | + o[1][0] *= ood |
| 208 | + o[1][1] *= ood |
| 209 | + o[1][2] *= ood |
| 210 | + o[1][3] *= ood |
| 211 | + o[2][0] *= ood |
| 212 | + o[2][1] *= ood |
| 213 | + o[2][2] *= ood |
| 214 | + o[2][3] *= ood |
| 215 | + o[3][0] *= ood |
| 216 | + o[3][1] *= ood |
| 217 | + o[3][2] *= ood |
| 218 | + o[3][3] *= ood |
| 219 | + |
| 220 | + return o |
| 221 | +} |
| 222 | + |
| 223 | +translate_mat :: fn(v: Vec3) -> Mat4 { |
| 224 | + m := identity_mat() |
| 225 | + m[3][0] = v.x |
| 226 | + m[3][1] = v.y |
| 227 | + m[3][2] = v.z |
| 228 | + m[3][3] = 1 |
| 229 | + return m |
| 230 | +} |
| 231 | + |
| 232 | +//rotate_mat :: fn(v: Vec3, rads: f32) -> Mat4 { |
| 233 | +// c := cos(rads) |
| 234 | +// s := sin(rads) |
| 235 | +// |
| 236 | +// a := norm(v) |
| 237 | +// b := 1.0 - c |
| 238 | +// vc := Vec3 { b, b, b } |
| 239 | +// t := a * vc |
| 240 | +// |
| 241 | +// rot := identity_mat() |
| 242 | +// |
| 243 | +// rot[0][0] = c + t.x * a.x |
| 244 | +// rot[0][1] = 0.0 + t.x * a.y + s * a.z |
| 245 | +// rot[0][2] = 0.0 + t.x * a.z - s * a.y |
| 246 | +// rot[0][3] = 0.0 |
| 247 | +// |
| 248 | +// rot[1][0] = 0.0 + t.y * a.x - s * a.z |
| 249 | +// rot[1][1] = c + t.y * a.y |
| 250 | +// rot[1][2] = 0.0 + t.y * a.z + s * a.x |
| 251 | +// rot[1][3] = 0.0 |
| 252 | +// |
| 253 | +// rot[2][0] = 0.0 + t.z * a.x + s * a.y |
| 254 | +// rot[2][1] = 0.0 + t.z * a.y - s * a.x |
| 255 | +// rot[2][2] = c + t.z * a.z |
| 256 | +// rot[2][3] = 0.0 |
| 257 | +// |
| 258 | +// return rot |
| 259 | +//} |
| 260 | + |
| 261 | +scale :: fn(m: Mat4, s: f32) -> Mat4 { |
| 262 | + m[0][0] *= s |
| 263 | + m[1][1] *= s |
| 264 | + m[2][2] *= s |
| 265 | + return m |
| 266 | +} |
| 267 | + |
| 268 | +look_at :: fn(eye, centre, up: Vec3) -> Mat4 { |
| 269 | + f := norm(centre - eye) |
| 270 | + s := norm(cross(f, up)) |
| 271 | + u := cross(s, f) |
| 272 | + |
| 273 | + return Mat4 { |
| 274 | + { s.x, u.x, -f.x, 0 }, |
| 275 | + { s.y, u.y, -f.y, 0 }, |
| 276 | + { s.z, u.z, -f.z, 0 }, |
| 277 | + { -dot(s, eye), -dot(u, eye), dot(f, eye), 1} |
| 278 | + } |
| 279 | +} |
| 280 | + |
| 281 | +perspective :: fn(fovy, aspect, near, far: f32) -> Mat4 { |
| 282 | + m := Mat4 { |
| 283 | + {0, 0, 0, 0}, |
| 284 | + {0, 0, 0, 0}, |
| 285 | + {0, 0, 0, 1}, |
| 286 | + {0, 0, 0, 0} |
| 287 | + } |
| 288 | + tan_half_fovy := tan(0.5 * fovy) |
| 289 | + |
| 290 | + m[0][0] = 1.0 / (aspect * tan_half_fovy) |
| 291 | + m[1][1] = 1.0 / (tan_half_fovy) |
| 292 | + m[2][2] = -(far + near) / (far - near) |
| 293 | + m[2][3] = -1.0 |
| 294 | + m[3][2] = -2.0 * far * near / (far - near) |
| 295 | + return m |
| 296 | +} |
0 commit comments