|
| 1 | +import sys |
| 2 | +sys.path.append("../") |
| 3 | +import argparse |
| 4 | +import json |
| 5 | +import os |
| 6 | + |
| 7 | +import shortuuid |
| 8 | +import logging |
| 9 | +from openai_concurrent import OpenAIChatCompletionConcurrent |
| 10 | +logging.basicConfig(level=logging.INFO) |
| 11 | +logger = logging.getLogger(__name__) |
| 12 | +import re |
| 13 | +import ast |
| 14 | + |
| 15 | +def parse_score(review, num): |
| 16 | + try: |
| 17 | + |
| 18 | + match = re.findall(r'{[^}]+}', review) |
| 19 | + if len(match)>0: |
| 20 | + |
| 21 | + dictionary_part = match[-1].replace("\n", "").replace('_', " ").lower() |
| 22 | + lines = ast.literal_eval(dictionary_part) |
| 23 | + for key, value in lines.items(): |
| 24 | + if value == 'na': |
| 25 | + lines[key] = 'N/A' |
| 26 | + elif value == 'n/a': |
| 27 | + lines[key] = 'N/A' |
| 28 | + elif value == 'not applicable': |
| 29 | + lines[key]= 'N/A' |
| 30 | + return lines |
| 31 | + else: |
| 32 | + return {} |
| 33 | + |
| 34 | + except Exception as e: |
| 35 | + logger.error(f'{e}\nContent: {review}\n' |
| 36 | + 'You must manually fix the score pair.') |
| 37 | + return {} |
| 38 | + |
| 39 | + |
| 40 | +def gen_prompt(reviewer_jsons, prompt_jsons, skills_jsons, response, item): |
| 41 | + reviewer_idx = 1 |
| 42 | + prompt_id = reviewer_jsons[reviewer_idx]['prompt_id'] |
| 43 | + prompt_json = prompt_jsons[prompt_id-1] |
| 44 | + assert prompt_json['prompt_id'] == prompt_id |
| 45 | + |
| 46 | + sys_prompt = prompt_json['system_prompt'] |
| 47 | + prompt_template = prompt_json['prompt_template'] |
| 48 | + defaults = prompt_json['defaults'] |
| 49 | + |
| 50 | + # skills =metrics |
| 51 | + skills = "" |
| 52 | + metric_list = item["metrics"] |
| 53 | + for label in metric_list: |
| 54 | + for skill in skills_jsons: |
| 55 | + if label in skill["Skill"]: |
| 56 | + name = skill["Skill"] |
| 57 | + criteria = skill["Criteria"] |
| 58 | + skills+=f"\n{name}: {criteria}" |
| 59 | + scoring = skill["Scoring"] |
| 60 | + skills+=f"\nScore 1: {scoring['1']}" |
| 61 | + skills+=f"\nScore 2: {scoring['2']}" |
| 62 | + skills+=f"\nScore 3: {scoring['3']}" |
| 63 | + skills+=f"\nScore 4: {scoring['4']}" |
| 64 | + skills+=f"\nScore 5: {scoring['5']}\n\n" |
| 65 | + break |
| 66 | + prompt = prompt_template.format(question=item["text"], response=response, skills=skills, num=3, sample_answer=item["answer"], **defaults) |
| 67 | + print("@@@",prompt) |
| 68 | + return sys_prompt, prompt |
| 69 | + |
| 70 | + |
| 71 | +def get_json_list(file_path): |
| 72 | + file_path = os.path.expanduser(file_path) |
| 73 | + file_extension = file_path.split('.')[-1] |
| 74 | + if file_extension=="jsonl": |
| 75 | + with open(file_path, 'r') as f: |
| 76 | + json_list = [] |
| 77 | + for line in f: |
| 78 | + json_list.append(json.loads(line)) |
| 79 | + return json_list |
| 80 | + else: |
| 81 | + with open(file_path, 'r') as f: |
| 82 | + return json.load(f) |
| 83 | + |
| 84 | + |
| 85 | +if __name__ == '__main__': |
| 86 | + parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.') |
| 87 | + parser.add_argument('-k', '--key-file', default='../openai_info/api_info.json') |
| 88 | + parser.add_argument('-q', '--question-file', default='../evaluation_set/flask_evaluation.jsonl') |
| 89 | + parser.add_argument('-s', '--skillset-file', default='../skillset_label/src/skillset.json') |
| 90 | + parser.add_argument('-a', '--answer-file', default='../model_output/outputs/chatgpt.jsonl') |
| 91 | + parser.add_argument('-p', '--prompt-file', default='src/ver3/prompt.jsonl') |
| 92 | + parser.add_argument('-r', '--reviewer-file', default='src/ver3/reviewer.jsonl') |
| 93 | + parser.add_argument('-o', '--output-review-file', default='outputs/chatgpt_review.jsonl') |
| 94 | + parser.add_argument('-e', '--output-error-file', default='outputs/chatgpt_review_error.jsonl') |
| 95 | + parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output') |
| 96 | + args = parser.parse_args() |
| 97 | + |
| 98 | + key_jsons = get_json_list(args.key_file) |
| 99 | + question_jsons = get_json_list(args.question_file) |
| 100 | + skills_jsons = get_json_list(args.skillset_file) |
| 101 | + answer_jsons = get_json_list(args.answer_file) |
| 102 | + reviewer_jsons = get_json_list(args.reviewer_file) |
| 103 | + prompt_jsons = get_json_list(args.prompt_file) |
| 104 | + |
| 105 | + handles = [] |
| 106 | + review_jsons = [] |
| 107 | + total_len = len(question_jsons) |
| 108 | + question_idx_list = list(range(total_len)) |
| 109 | + question_copy = [] |
| 110 | + answer_copy = [] |
| 111 | + |
| 112 | + requests = [] |
| 113 | + for i in question_idx_list: |
| 114 | + for row in answer_jsons: |
| 115 | + if row.get('question_id') == question_jsons[i]['question_id']: |
| 116 | + answer_elem = row |
| 117 | + break |
| 118 | + answer_copy.append(answer_elem) |
| 119 | + assert answer_copy[i]['question_id'] == question_jsons[i]['question_id'] |
| 120 | + question_copy.append(question_jsons[i]) |
| 121 | + sys_prompt, prompt = gen_prompt(reviewer_jsons, prompt_jsons, skills_jsons,answer_copy[i]["text"], question_jsons[i]) |
| 122 | + review_id = shortuuid.uuid() |
| 123 | + review_jsons.append({ |
| 124 | + 'review_id': review_id, |
| 125 | + 'question_id': question_jsons[i]['question_id'], |
| 126 | + 'metadata': {}, |
| 127 | + }) |
| 128 | + requests.append( |
| 129 | + { |
| 130 | + 'review_id': review_id, |
| 131 | + 'question_id': question_jsons[i]['question_id'], |
| 132 | + 'metadata': {}, |
| 133 | + 'request': { |
| 134 | + "model": "gpt-4-0613", |
| 135 | + "messages":[ |
| 136 | + { |
| 137 | + 'role': 'system', |
| 138 | + 'content': sys_prompt |
| 139 | + }, |
| 140 | + { |
| 141 | + 'role': 'user', |
| 142 | + 'content': prompt, |
| 143 | + } |
| 144 | + ] |
| 145 | + }, |
| 146 | + # setting temperature 0 for reproducibility |
| 147 | + "temperature": 0, |
| 148 | + "max_tokens": args.max_tokens |
| 149 | + } |
| 150 | + ) |
| 151 | + |
| 152 | + openai_concurrent = OpenAIChatCompletionConcurrent(api_keys=key_jsons["api_keys"], requests_per_minute=60, expected_response_seconds=5) |
| 153 | + responses, fails = openai_concurrent.create_many(requests) |
| 154 | + |
| 155 | + reviews = [response['response']['choices'][0]['message']['content'] for response in responses] |
| 156 | + total_tokens = [response['response']['usage']['total_tokens'] for response in responses] |
| 157 | + print("total_token:", sum(total_tokens)) |
| 158 | + |
| 159 | + delete_index = [] |
| 160 | + if len(fails)>0: |
| 161 | + with open(f'{args.output_error_file}', 'w') as output_error_file: |
| 162 | + try: |
| 163 | + for idx, fail in enumerate(fails): |
| 164 | + print("fail:", fail) |
| 165 | + for index, item in enumerate(question_copy): |
| 166 | + if int(item.get("question_id")) == int(fail['question_id']): |
| 167 | + delete_elem_idx = index |
| 168 | + delete_index.append(delete_elem_idx) |
| 169 | + output_error_file.write(json.dumps(question_copy[delete_elem_idx]) + '\n') |
| 170 | + except: |
| 171 | + print("@@@", delete_index) |
| 172 | + delete_index=[] |
| 173 | + |
| 174 | + print("$$$", delete_index) |
| 175 | + question_copy = [item for index, item in enumerate(question_copy) if index not in delete_index] |
| 176 | + |
| 177 | + |
| 178 | + output_review_directory = os.path.dirname(args.output_review_file) |
| 179 | + |
| 180 | + if not os.path.exists(output_review_directory): |
| 181 | + os.makedirs(output_review_directory) |
| 182 | + |
| 183 | + with open(f'{args.output_review_file}', 'w') as output_review_file: |
| 184 | + for idx, review in enumerate(reviews): |
| 185 | + num = 3 |
| 186 | + scores = parse_score(review, num) |
| 187 | + review_jsons[idx] = question_copy[idx] |
| 188 | + for row in answer_jsons: |
| 189 | + if row.get('question_id') == question_copy[idx]['question_id']: |
| 190 | + review_jsons[idx]['target_txt'] = row["text"] |
| 191 | + review_jsons[idx]['review'] = review |
| 192 | + review_jsons[idx]['score'] = scores |
| 193 | + review_jsons[idx]['total_tokens_step4'] = total_tokens[idx] |
| 194 | + try: |
| 195 | + output_review_file.write(json.dumps(review_jsons[idx]) + '\n') |
| 196 | + except Exception as e: |
| 197 | + output_review_file.write('\n') |
| 198 | + print(review_jsons[idx]['question_id']) |
0 commit comments