-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
152 lines (121 loc) · 5.75 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import sys
import time
from faster_fifo import Queue, Empty
import multiprocessing
from tensorboardX import SummaryWriter
import numpy as np
from brain_agent.core.actor_worker import ActorWorker
from brain_agent.core.policy_worker import PolicyWorker
from brain_agent.core.shared_buffer import SharedBuffer
from brain_agent.core.learner_worker import LearnerWorker
from brain_agent.utils.cfg import Configs
from brain_agent.utils.logger import log, init_logger
from brain_agent.utils.utils import get_log_path, dict_of_list_put, get_summary_dir, AttrDict
from brain_agent.envs.env_utils import create_env
def main():
cfg = Configs.get_defaults()
cfg = Configs.override_from_file_name(cfg)
cfg = Configs.override_from_cli(cfg)
cfg_str = Configs.to_yaml(cfg)
cfg = Configs.to_attr_dict(cfg)
init_logger(cfg.log.log_level, get_log_path(cfg))
log.info(f'Experiment configuration:\n{cfg_str}')
tmp_env = create_env(cfg, env_config=None)
action_space = tmp_env.action_space
obs_space = tmp_env.observation_space
level_info = tmp_env.level_info
tmp_env.close()
shared_buffer = SharedBuffer(cfg, obs_space, action_space)
learner_worker_queue = Queue()
policy_worker_queue = Queue()
actor_worker_queues = [Queue(2 * 1000 * 1000) for _ in range(cfg.actor.num_workers)]
policy_queue = Queue()
report_queue = Queue(40 * 1000 * 1000)
policy_lock = multiprocessing.Lock()
resume_experience_collection_cv = multiprocessing.Condition()
learner_worker = LearnerWorker(cfg, obs_space, action_space, level_info, report_queue, learner_worker_queue,
policy_worker_queue,
shared_buffer, policy_lock, resume_experience_collection_cv)
learner_worker.start_process()
learner_worker.init()
policy_worker = PolicyWorker(cfg, obs_space, action_space, level_info, shared_buffer,
policy_queue, actor_worker_queues, policy_worker_queue, report_queue, policy_lock, resume_experience_collection_cv)
policy_worker.start_process() # init(), init_model() will be triggered from learner worker
actor_workers = []
for i in range(cfg.actor.num_workers):
w = ActorWorker(cfg, obs_space, action_space, i, shared_buffer, actor_worker_queues[i], policy_queue,
report_queue, learner_worker_queue)
w.init()
w.request_reset()
actor_workers.append(w)
summary_dir = get_summary_dir(cfg=cfg)
writer = SummaryWriter(summary_dir) if cfg.dist.world_rank == 0 else None
# Add configuration in tensorboard
if cfg.dist.world_rank == 0:
cfg_str = cfg_str.replace(' ', ' ').replace('\n', ' \n')
writer.add_text('cfg', cfg_str, 0)
stats = AttrDict()
stats['episodic_stats'] = AttrDict()
last_report = time.time()
last_env_steps = 0
terminate = False
reports = []
while not terminate:
try:
reports.extend(report_queue.get_many(timeout=0.1))
if time.time() - last_report > cfg.log.report_interval:
interval = time.time() - last_report
last_report = time.time()
terminate, last_env_steps = process_report(cfg, reports, writer, stats, last_env_steps, level_info,
interval)
reports = []
except Empty:
time.sleep(1.0)
pass
def process_report(cfg, reports, writer, stats, last_env_steps, level_info, interval):
terminate = False
env_steps = last_env_steps
for report in reports:
if report is not None:
if 'terminate' in report:
terminate = True
if 'learner_env_steps' in report:
env_steps = report['learner_env_steps']
if 'train' in report:
s = report['train']
for k, v in s.items():
dict_of_list_put(stats, f'train/{k}', v, cfg.log.num_stats_average)
if 'episodic_stats' in report:
s = report['episodic_stats']
level_name = s['level_name']
level_id = s['task_id']
tag = f'_dmlab/{level_id:02d}_{level_name}_human_norm_score'
dict_of_list_put(stats.episodic_stats, tag, s['hns'], cfg.log.num_stats_average)
fps = (env_steps - last_env_steps) / interval
dict_of_list_put(stats, f'train/_fps', fps, cfg.log.num_stats_average)
key_timings = ['times_learner_worker', 'times_actor_worker', 'times_policy_worker']
for key in key_timings:
if key in report:
for k, v in report[key].items():
tag = key+'/'+k
dict_of_list_put(stats, tag, v, cfg.log.num_stats_average)
if writer is not None:
for k, v in stats.items():
if k == 'episodic_stats':
hns = []
for kk, vv in v.items():
writer.add_scalar(kk, np.array(vv).mean(), env_steps)
hns.append(np.array(vv).mean())
if len(v.keys()) == level_info['num_levels']:
hns = np.array(hns)
capped_hns = np.clip(hns, None, 100)
writer.add_scalar(f'_dmlab/000_mean_human_norm_score', hns.mean(), env_steps)
writer.add_scalar(f'_dmlab/000_mean_capped_human_norm_score', capped_hns.mean(), env_steps)
writer.add_scalar(f'_dmlab/000_median_human_norm_score', np.median(hns), env_steps)
else:
writer.add_scalar(k, np.array(v).mean(), env_steps)
if env_steps >= cfg.optim.train_for_env_steps:
terminate = True
return terminate, env_steps
if __name__ == '__main__':
sys.exit(main())