-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheat.h
758 lines (680 loc) · 22.8 KB
/
eat.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
// E.A.T. --- Eyeball Allocation Table (EAT), written by katahiromz.
// It's a specialized memory management system in C++. See file License.txt.
//////////////////////////////////////////////////////////////////////////////
#ifndef EYEBALL_ALLOCATION_TABLE
#define EYEBALL_ALLOCATION_TABLE 3 // Version 3
#include <cstdlib>
#include <cstdio>
#include <cstdint>
#include <cstring>
#include <cassert>
namespace EAT
{
//////////////////////////////////////////////////////////////////////////
// EAT::ENTRY<T_SIZE> --- memory block info entry
template <typename T_SIZE>
struct ENTRY
{
// Types
typedef T_SIZE size_type;
typedef ENTRY<T_SIZE> self_type;
enum FLAGS
{
FLAG_NONE = 0,
FLAG_VALID = 1,
FLAG_LOCKED = 2
};
// Members
size_type m_data_size;
size_type m_offset;
size_type m_flags;
// Constructors
ENTRY(size_type data_area_size, size_type offset)
: m_data_size(data_area_size)
, m_offset(offset)
, m_flags(FLAG_VALID)
{
}
ENTRY(size_type data_area_size, size_type offset, size_type flags)
: m_data_size(data_area_size)
, m_offset(offset)
, m_flags(flags)
{
}
// Attributes
bool is_valid() const
{
return ((m_flags & FLAG_VALID) != 0);
}
void validate()
{
m_flags |= FLAG_VALID;
}
void invalidate()
{
m_flags &= ~FLAG_VALID;
}
bool is_locked() const
{
return ((m_flags & FLAG_LOCKED) != 0);
}
void lock(bool do_lock = true)
{
if (do_lock)
m_flags |= FLAG_LOCKED;
else
m_flags &= ~FLAG_LOCKED;
}
}; // EAT::ENTRY<T_SIZE>
//////////////////////////////////////////////////////////////////////////
// EAT::HEAD<T_SIZE> --- the header data
template <typename T_SIZE>
struct HEAD
{
// Types
typedef T_SIZE size_type;
enum FLAGS
{
SIZE_TYPE_SIZE_MASK = 0x000000FFUL,
FLAG_INVALID = 0x00000100UL,
FLAG_HIDDEN = 0x00000200UL,
FLAG_MOVEABLE = 0x00000400UL,
FLAG_PUBLIC = 0x00000800UL,
FLAG_CONFIDENTIAL = 0x00001000UL,
FLAG_ARCHIVE = 0x00002000UL,
FLAG_IMPORTANT = 0x00004000UL,
FLAG_SYSTEM = 0x00008000UL,
FLAG_UNCONFIRMED = 0x00010000UL,
FLAG_DRAFT = 0x00020000UL,
FLAG_FINAL = 0x00040000UL,
FLAG_RENEWAL = 0x00080000UL,
FLAG_EXPIRED = 0x00100000UL,
FLAG_ENCRYPTED = 0x00200000UL,
FLAG_INTERNAL = 0x00400000UL,
FLAG_EXTERNAL = 0x00800000UL,
FLAG_IMAGE = 0x01000000UL,
FLAG_PROGRAM_DATA = 0x02000000UL,
FLAG_MICROFILM = 0x04000000UL,
FLAG_REPORT = 0x08000000UL,
FLAG_LIST = 0x10000000UL,
FLAG_EVIDENCE = 0x20000000UL,
FLAG_AGREEMENT = 0x40000000UL,
FLAG_COMMUNICATION = 0x80000000UL,
};
// Members
char m_magic[4]; // must be "EAT\0"
uint32_t m_flags;
size_type m_total_size;
size_type m_boudary_1;
size_type m_boudary_2;
// Attributes
bool is_valid() const
{
return ((memcmp(m_magic, "EAT\0", 4) == 0) &&
(size_type_size() == size_type(sizeof(size_type))) &&
(!(m_flags & FLAG_INVALID)) &&
(m_boudary_1 <= m_boudary_2) &&
(m_boudary_2 <= m_total_size));
}
void *get_body()
{
return this + 1;
}
const void *get_body() const
{
return this + 1;
}
size_type size_type_size() const
{
return size_type(m_flags & SIZE_TYPE_SIZE_MASK);
}
void modify_flags(uint32_t add_, uint32_t remove_)
{
m_flags &= ~remove_;
m_flags |= add_;
}
}; // EAT::HEAD<T_SIZE>
//////////////////////////////////////////////////////////////////////////
// EAT::MASTER<T_SIZE> --- memory management master
//////////////////////////////////////////////////////////////////////////
//
// ---- "THE MASTER IMAGE" ----
//
// +---------------------------+(top) == this
// |HEAD |
// +---------------------------+(head_size)
// |DATA #0 (variable length) |
// |DATA #1 |
// | : |
// | : DATA_AREA | | |
// | : | | |
// |DATA #n-1 (grows downward) | V V
// +---------------------------+(boundary_1)
// | |
// | FREE_AREA |
// | |
// +---------------------------+(boundary_2)
// |ENTRY #n-1 (grows upward) | A A
// | : | | |
// | : TABLE | | |
// | : |
// |ENTRY #1 |
// |ENTRY #0 |
// +---------------------------+(bottom)
//
//////////////////////////////////////////////////////////////////////////
template <typename T_SIZE>
struct MASTER : protected HEAD<T_SIZE>
{
// Types
typedef T_SIZE size_type;
typedef MASTER<T_SIZE> self_type;
typedef HEAD<T_SIZE> head_type;
typedef ENTRY<T_SIZE> entry_type;
// Constructors
MASTER(size_type total_size)
{
init(total_size);
assert(is_valid());
}
// Copy
self_type& operator=(const MASTER<T_SIZE>& src)
{
copy(src);
return *this;
}
bool copy(const MASTER<T_SIZE>& src)
{
assert(is_valid());
assert(src.is_valid());
if (this == &src)
return true; // same
if (total_size() == src.total_size()) // same total size
{
std::memcpy(this, &src, total_size());
return true;
}
// different total size
init(head_type::m_total_size);
if (!merge(src))
return false;
assert(is_valid());
assert(src.is_valid());
return true;
}
// Merge
bool merge(const MASTER<T_SIZE>& src)
{
assert(is_valid());
assert(src.is_valid());
if (this == &src)
return true; // same
// not same
size_type addition = src.used_area_size() - src.head_size();
assert(addition <= free_area_size());
if (addition > free_area_size())
return false; // not mergeable
auto diff = size_type(head_type::m_boudary_1 - src.head_size());
// add data
auto data_size_2 = src.data_area_size();
std::memcpy(get_free_area(), src.get_data_area(), data_size_2);
head_type::m_boudary_1 += data_size_2;
// add entries
auto num = src.num_entries();
auto entries1 = get_entries();
entries1 -= num;
auto entries2 = src.get_entries();
for (size_type i = 0; i < num; ++i)
{
entries1[i].m_data_size = entries2[i].m_data_size;
entries1[i].m_offset = size_type(entries2[i].m_offset + diff);
entries1[i].m_flags = entries2[i].m_flags;
}
head_type::m_boudary_2 -= size_type(num * entry_size());
assert(is_valid());
assert(src.is_valid());
return true;
}
// initialize
void init(size_t total_size)
{
std::memcpy(head_type::m_magic, "EAT\0", 4);
head_type::m_flags = size_type_size();
head_type::m_total_size = total_size;
head_type::m_boudary_1 = head_size();
head_type::m_boudary_2 = total_size;
assert(is_valid());
}
void clear(bool fill_by_zero = true)
{
assert(is_valid());
head_type::m_boudary_1 = head_size();
head_type::m_boudary_2 = head_type::m_total_size;
if (fill_by_zero)
std::memset(get_free_area(), 0, free_area_size());
assert(is_valid());
}
// index access
void *operator[](size_type index)
{
return reinterpret_cast<uint8_t *>(this)[index];
}
const void *operator[](size_type index) const
{
return reinterpret_cast<const uint8_t *>(this)[index];
}
size_type size() const
{
return head_type::m_total_size;
}
// Attributes
bool is_valid() const
{
if (!head_type::is_valid())
return false;
return ((head_size() <= total_size()) &&
(total_size() == free_area_size() + used_area_size()) &&
(used_area_size() == head_size() + data_area_size() + table_size()) &&
((table_size() % entry_size()) == 0));
}
bool empty() const
{
return (head_type::m_boudary_2 == head_type::m_total_size);
}
size_type head_size() const
{
return size_type(sizeof(head_type));
}
size_type size_type_size() const
{
return size_type(sizeof(size_type));
}
size_type total_size() const
{
return head_type::m_total_size;
}
size_type free_area_size() const
{
return size_type(head_type::m_boudary_2 - head_type::m_boudary_1);
}
size_type used_area_size() const
{
return size_type(head_type::m_boudary_1 + table_size());
}
size_type data_area_size() const
{
return size_type(head_type::m_boudary_1 - head_size());
}
size_type table_size() const
{
return size_type(head_type::m_total_size - head_type::m_boudary_2);
}
size_type entry_size() const
{
return size_type(sizeof(entry_type));
}
void *get_data_area()
{
return head_type::get_body();
}
const void *get_data_area() const
{
return head_type::get_body();
}
void *get_free_area()
{
return ptr_from_offset(head_type::m_boudary_1);
}
const void *get_free_area() const
{
return ptr_from_offset(head_type::m_boudary_1);
}
void modify_flags(uint32_t add_, uint32_t remove_)
{
modify_flags(add_, remove_);
}
// entries
size_type num_entries() const
{
return size_type(table_size() / entry_size());
}
entry_type *get_entries()
{
char *p = reinterpret_cast<char *>(this);
p += head_type::m_boudary_2;
return reinterpret_cast<entry_type *>(p);
}
const entry_type *get_entries() const
{
const char *p = reinterpret_cast<const char *>(this);
p += head_type::m_boudary_2;
return reinterpret_cast<const entry_type *>(p);
}
// fetch the entry
entry_type *fetch_entry(void *ptr)
{
return const_cast<entry_type *>(const_cast<const self_type*>(this)->fetch_entry(ptr));
}
const entry_type *fetch_entry(void *ptr) const
{
const entry_type *ret = NULL;
assert(is_valid());
if (!ptr)
return NULL;
auto offset = offset_from_ptr(ptr);
// find entry of same offset
auto entries = get_entries();
for (size_type i = 0; i < num_entries(); ++i)
{
if (entries[i].m_offset == offset) // found
{
ret = &entries[i];
break;
}
}
assert(is_valid());
return ret;
}
void free_entry(entry_type *entry)
{
assert(is_valid());
if (!entry)
return;
entry->invalidate();
auto entries = get_entries();
if (entry != entries)
{
assert(is_valid());
return;
}
// top entry
auto num = num_entries();
size_type i, data_deletion = 0;
for (i = 0; i < num; ++i)
{
if (entries[i].is_valid())
break;
data_deletion += entries[i].m_data_size;
}
// free invalids
if (i == num)
{
clear();
}
else
{
head_type::m_boudary_1 -= data_deletion;
head_type::m_boudary_2 += size_type(i * entry_size());
}
assert(is_valid());
}
// offsets and pointers
size_type offset_from_ptr(const void *ptr) const
{
const char *this_p = reinterpret_cast<const char *>(this);
const char *p = reinterpret_cast<const char *>(ptr);
assert(this_p < p);
return size_type(p - this_p);
}
void *ptr_from_offset(size_type offset)
{
char *this_p = reinterpret_cast<char *>(this);
return this_p + offset;
}
const void *ptr_from_offset(size_type offset) const
{
const char *this_p = reinterpret_cast<const char *>(this);
return this_p + offset;
}
// retrieve the size of memory
size_type _msize_(void *ptr) const
{
assert(is_valid());
auto entry = fetch_entry(ptr);
if (!entry)
return 0;
return entry->m_data_size;
}
// allocate
void *malloc_(size_type siz)
{
assert(is_valid());
if (siz <= 0)
return NULL;
// size is non-zero
auto required = size_type(siz + entry_size());
if (required > free_area_size())
return NULL; // out of memory
// OK, allocatable
auto offset = head_type::m_boudary_1;
void *ret = reinterpret_cast<void *>(&reinterpret_cast<uint8_t *>(this)[offset]);
head_type::m_boudary_1 += siz;
head_type::m_boudary_2 -= entry_size();
get_entries()[0] = entry_type(siz, offset);
assert(is_valid());
return ret;
}
void *calloc_(size_type nelem, size_type siz)
{
assert(is_valid());
auto mult = nelem * siz;
void *ret = malloc_(mult);
if (!ret)
return NULL;
// fill by zero
std::memset(ret, 0, mult);
assert(is_valid());
return ret;
}
// re-allocate
void *realloc_(void *ptr, size_type siz)
{
assert(is_valid());
if (ptr == NULL)
return malloc_(siz);
if (siz <= 0)
{
// size is zero
free_(ptr);
return NULL;
}
// find the entry
auto entry = fetch_entry(ptr);
assert(entry);
if (!entry)
return NULL; // entry not found
// entry was found
void *ret = malloc_(siz);
if (!ret)
return NULL;
// copy contents
if (siz <= entry->m_data_size)
std::memcpy(ret, ptr, siz);
else
std::memcpy(ret, ptr, entry->m_data_size);
// free old one
free_entry(entry);
assert(is_valid());
return ret;
}
// free
void free_(void * ptr)
{
assert(is_valid());
if (!ptr)
return;
auto entry = fetch_entry(ptr);
if (entry)
free_entry(entry);
assert(is_valid());
}
char *strdup_(const char *psz)
{
assert(is_valid());
// calculate size
auto len = size_type(strlen(psz));
auto siz = size_type((len + 1) * sizeof(char));
// allocate
auto ret = reinterpret_cast<char *>(malloc_(siz));
if (ret)
std::memcpy(ret, psz, siz);
assert(is_valid());
return ret;
}
#ifdef _WIN32
wchar_t *wcsdup_(const wchar_t *psz)
{
assert(is_valid());
// calculate size
auto len = size_type(wcslen(psz));
auto siz = size_type((len + 1) * sizeof(wchar_t));
// allocate
auto ret = reinterpret_cast<wchar_t *>(malloc_(siz));
if (ret)
std::memcpy(ret, psz, siz);
assert(is_valid());
return ret;
}
#endif
void compact()
{
assert(is_valid());
auto num = num_entries();
if (num <= 0)
return;
// there are some entries
auto entries = get_entries();
auto offset = head_size();
auto p = reinterpret_cast<char *>(get_data_area());
// do scan the data area in reverse order
auto ep = &entries[num]; // end of entries
for (long i = long(num - 1); i >= 0; --i)
{
if (!entries[i].is_valid())
continue;
// shift to p
std::memmove(p, ptr_from_offset(entries[i].m_offset), entries[i].m_data_size);
// fix offset
entries[i].m_offset = offset;
// copy entry and move up
--ep;
*ep = entries[i];
// increase p and offset
p += entries[i].m_data_size;
offset += entries[i].m_data_size;
}
// update boundarys
head_type::m_boudary_1 = offset;
head_type::m_boudary_2 = offset_from_ptr(ep);
assert(is_valid());
}
bool resize(size_type total)
{
assert(is_valid());
if (head_type::m_total_size == total)
return true;
auto num = num_entries();
auto entries = get_entries();
auto p = reinterpret_cast<char *>(entries);
if (head_type::m_total_size < total) // grow?
{
// move entries
const auto diff = total - head_type::m_total_size;
std::memmove(p + diff, p, num * entry_size());
head_type::m_boudary_2 += diff;
}
else // shrink?
{
const auto diff = head_type::m_total_size - total;
if (free_area_size() < diff)
return false;
// move entries
std::memmove(p - diff, p, num * entry_size());
head_type::m_boudary_2 -= diff;
}
// fix total
head_type::m_total_size = total;
assert(is_valid());
return true;
}
// callback: bool T_ENTRY_FN(entry_type&);
template <typename T_ENTRY_FN>
void foreach_entry(T_ENTRY_FN& fn)
{
assert(is_valid());
auto entries = get_entries();
for (size_type i = 0; i < num_entries(); ++i)
{
auto& entry = entries[i];
if (!entry.is_valid())
continue;
if (!fn(entry))
break;
}
assert(is_valid());
}
// callback: bool T_PTR_FN(void *);
template <typename T_PTR_FN>
void foreach_ptr(T_PTR_FN& fn)
{
assert(is_valid());
auto entries = get_entries();
for (size_type i = 0; i < num_entries(); ++i)
{
auto& entry = entries[i];
if (!entry.is_valid())
continue;
void *ptr = ptr_from_offset(entry.m_offset);
if (!fn(ptr))
break;
}
assert(is_valid());
}
}; // EAT::MASTER<T_SIZE>
//////////////////////////////////////////////////////////////////////////////
// EAT::create_master<T_SIZE>(total_size)
// EAT::resize_master<T_SIZE>(old_master, new_total_size)
// EAT::master_from_image<T_SIZE>(image_ptr, image_size = 0)
// EAT::destroy_master
template <typename T_SIZE>
inline MASTER<T_SIZE> *create_master(size_t total_size)
{
auto master = reinterpret_cast<MASTER<T_SIZE> *>(std::malloc(total_size));
if (!master)
return NULL;
master->init(total_size);
return master;
}
inline void destroy_master(void *master)
{
std::free(master);
}
template <typename T_SIZE>
inline MASTER<T_SIZE> *resize_master(MASTER<T_SIZE> *old_master, size_t new_total_size)
{
if (new_total_size < old_master->size() &&
old_master->free_area_size() < old_master.size() - new_total_size)
{
return NULL;
}
auto new_ptr = std::realloc(old_master, new_total_size);
if (!new_ptr)
return NULL;
auto new_master = reinterpret_cast<MASTER<T_SIZE> *>(new_ptr);
new_master->resize(new_total_size);
return new_master;
}
template <typename T_SIZE>
inline MASTER<T_SIZE> *master_from_image(void *image_ptr, size_t image_size = 0)
{
auto master = reinterpret_cast<MASTER<T_SIZE> *>(image_ptr);
if (!master)
return NULL;
if (image_size)
master->init(image_size);
else
master->init(master->total_size());
return master;
}
} // namespace EAT
#endif // ndef EYEBALL_ALLOCATION_TABLE