forked from bevyengine/bevy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscene.rs
122 lines (109 loc) · 5.24 KB
/
scene.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
use bevy::{prelude::*, type_registry::TypeRegistry};
/// This example illustrates loading and saving scenes from files
fn main() {
App::build()
.add_default_plugins()
// Registering components informs Bevy that they exist. This allows them to be used when loading scenes
// This step is only required if you want to load your components from scene files.
// Unregistered components can still be used in your code, but they will be ignored during scene save/load.
// In the future registering components will also make them usable from the Bevy editor.
// The core Bevy plugins already register their components, so you only need this step for custom components.
.register_component::<ComponentA>()
.register_component::<ComponentB>()
.add_startup_system(save_scene_system.thread_local_system())
.add_startup_system(load_scene_system.system())
.add_startup_system(infotext_system.system())
.add_system(print_system.system())
.run();
}
// Registered components must implement the `Properties` and `FromResources` traits.
// The `Properties` trait enables serialization, deserialization, dynamic property access, and change detection.
// `Properties` enable a bunch of cool behaviors, so its worth checking out the dedicated `properties.rs` example.
// The `FromResources` trait determines how your component is constructed when it loads. For simple use cases you can just
// implement the `Default` trait (which automatically implements FromResources). The simplest registered component just needs
// these two derives:
#[derive(Properties, Default)]
struct ComponentA {
pub x: f32,
pub y: f32,
}
// Some components have fields that cannot (or should not) be written to scene files. These can be ignored with
// the #[property(ignore)] attribute. This is also generally where the `FromResources` trait comes into play.
// `FromResources` gives you access to your App's current ECS `Resources` when you construct your component.
#[derive(Properties)]
struct ComponentB {
pub value: String,
#[property(ignore)]
pub time_since_startup: std::time::Duration,
}
impl FromResources for ComponentB {
fn from_resources(resources: &Resources) -> Self {
let time = resources.get::<Time>().unwrap();
ComponentB {
time_since_startup: time.time_since_startup(),
value: "Default Value".to_string(),
}
}
}
fn load_scene_system(asset_server: Res<AssetServer>, mut scene_spawner: ResMut<SceneSpawner>) {
// Scenes are loaded just like any other asset.
let scene_handle: Handle<DynamicScene> = asset_server.load("scenes/load_scene_example.scn");
// SceneSpawner can "spawn" scenes. "Spawning" a scene creates a new instance of the scene in the World with new entity ids.
// This guarantees that it will not overwrite existing entities.
scene_spawner.spawn_dynamic(scene_handle);
// This tells the AssetServer to watch for changes to assets.
// It enables our scenes to automatically reload in game when we modify their files
asset_server.watch_for_changes().unwrap();
}
// This system prints all ComponentA components in our world. Try making a change to a ComponentA in load_scene_example.scn.
// You should immediately see the changes appear in the console.
fn print_system(mut query: Query<(Entity, Changed<ComponentA>)>) {
for (entity, component_a) in &mut query.iter() {
println!(" Entity({})", entity.id());
println!(
" ComponentA: {{ x: {} y: {} }}\n",
component_a.x, component_a.y
);
}
}
fn save_scene_system(_world: &mut World, resources: &mut Resources) {
// Scenes can be created from any ECS World. You can either create a new one for the scene or use the current World.
let mut world = World::new();
world.spawn((
ComponentA { x: 1.0, y: 2.0 },
ComponentB {
value: "hello".to_string(),
..ComponentB::from_resources(resources)
},
));
world.spawn((ComponentA { x: 3.0, y: 4.0 },));
// The component registry resource contains information about all registered components. This is used to construct scenes.
let type_registry = resources.get::<TypeRegistry>().unwrap();
let scene = DynamicScene::from_world(&world, &type_registry.component.read());
// Scenes can be serialized like this:
println!(
"{}",
scene.serialize_ron(&type_registry.property.read()).unwrap()
);
// TODO: save scene
}
// This is only necessary for the info message in the UI. See examples/ui/text.rs for a standalone text example.
fn infotext_system(mut commands: Commands, asset_server: Res<AssetServer>) {
commands
.spawn(UiCameraComponents::default())
.spawn(TextComponents {
style: Style {
align_self: AlignSelf::FlexEnd,
..Default::default()
},
text: Text {
value: "Nothing to see in this window! Check the console output!".to_string(),
font: asset_server.load("fonts/FiraSans-Bold.ttf"),
style: TextStyle {
font_size: 50.0,
color: Color::WHITE,
},
},
..Default::default()
});
}