-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
136 lines (118 loc) · 4.86 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import argparse
import os
import time
import torchvision
import torchvision.transforms as transforms
from torchvision.models import *
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='cifar10',
help='The dataset we will use')
parser.add_argument('--net', type=str, default='vgg16',
help='The type of neural network used')
parser.add_argument('--lr', type=float, default=0.001,
help='The learning rate')
parser.add_argument('--momentum', type=float, default=0.9,
help='Momentum for SGD')
parser.add_argument('--weight_decay', type=float, default=5e-4,
help='Weight decay')
parser.add_argument('--batch_size', type=int, default=128,
help='The batch size')
parser.add_argument('--cifar_path', type=str, default='../data',
help='The path to the CIFAR10 dataset')
parser.add_argument('--num_workers', type=int, default=0,
help='The number of workers to load the data')
parser.add_argument('--num_epochs', type=int, default=10,
help='The number of epochs we train for')
parser.add_argument('--cuda', action='store_true',
help='Use this flag, if you want to use CUDA')
parser.add_argument('--gpu_id', default='0', type=str,
help='Set id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--seed', type=int, default=1,
help='Set a random seed')
parser.add_argument('--batch_print', type=int, default=10,
help='Prints a sanity check message every x batches')
args = parser.parse_args()
torch.manual_seed(args.seed)
if args.cuda:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
torch.cuda.manual_seed(args.seed)
model = vgg.vgg16()
model.classifier = nn.Linear(512, 10)
if args.cuda:
model.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum,
weight_decay=args.weight_decay)
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_set = torchvision.datasets.CIFAR10(root=args.cifar_path, train=True,
download=True, transform=transform_train)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size,
shuffle=True, num_workers=args.num_workers)
test_set = torchvision.datasets.CIFAR10(root=args.cifar_path, train=False,
download=True, transform=transform_test)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=args.batch_size,
shuffle=False, num_workers=args.num_workers)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# Training
def train(epoch):
model.train()
train_loss = 0.
correct = 0.
total = 0.
for batch_idx, (inputs, targets) in enumerate(train_loader):
if args.cuda:
inputs, targets = inputs.cuda(), targets.cuda()
optimizer.zero_grad()
inputs, targets = Variable(inputs), Variable(targets)
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
if batch_idx % args.batch_print == 0:
if batch_idx != 0:
train_loss /= args.batch_print
print 'Epoch %d, Batch %d/%d | Loss: %f | Accuracy: %f' %\
(epoch, batch_idx, len(train_loader), train_loss, correct/total)
train_loss = 0.
total = 0.
correct = 0.
def test(epoch):
model.eval()
test_loss = 0.
correct = 0.
total = 0.
for batch_idx, (inputs, targets) in enumerate(test_loader):
if args.cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, volatile=True), Variable(targets)
outputs = model(inputs)
loss = criterion(outputs, targets)
test_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
print 'Epoch %d | Loss: %f | Accuracy: %f' %\
(epoch, test_loss/len(test_loader), correct/total)
start_time = time.time()
for epoch in range(args.num_epochs):
train(epoch)
test(epoch)
time_elapsed = time.time() - start_time
print "Time Elapsed:", time.strftime("%H hours, %M minutes,%S seconds", time.gmtime(time_elapsed))