forked from CyberAgentAILab/cmaes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsafecma.py
137 lines (104 loc) · 3.5 KB
/
safecma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
from ..cmaes.safe_cma import SafeCMA
def example1():
"""
example with single safety function
"""
# number of dimensions
dim = 5
# objective function
def quadratic(x):
coef = 1000 ** (np.arange(dim) / float(dim - 1))
return np.sum((x * coef) ** 2)
# safety function
def safe_function(x):
return x[0]
# safe seeds
safe_seeds_num = 10
safe_seeds = (np.random.rand(safe_seeds_num, dim) * 2 - 1) * 5
safe_seeds[:, 0] = -np.abs(safe_seeds[:, 0])
# evaluation of safe seeds (with a single safety function)
seeds_evals = np.array([quadratic(x) for x in safe_seeds])
seeds_safe_evals = np.stack([[safe_function(x)] for x in safe_seeds])
safety_threshold = np.array([0])
# optimizer (safe CMA-ES)
optimizer = SafeCMA(
sigma=1.0,
safety_threshold=safety_threshold,
safe_seeds=safe_seeds,
seeds_evals=seeds_evals,
seeds_safe_evals=seeds_safe_evals,
)
unsafe_eval_counts = 0
best_eval = np.inf
for generation in range(400):
solutions = []
for _ in range(optimizer.population_size):
# Ask a parameter
x = optimizer.ask()
value = quadratic(x)
safe_value = np.array([safe_function(x)])
# save best eval
best_eval = np.min((best_eval, value))
unsafe_eval_counts += safe_value > safety_threshold
solutions.append((x, value, safe_value))
# Tell evaluation values.
optimizer.tell(solutions)
print(f"#{generation} ({best_eval} {unsafe_eval_counts})")
if optimizer.should_stop():
break
def example2():
"""
example with multiple safety functions
"""
# number of dimensions
dim = 5
# objective function
def quadratic(x):
coef = 1000 ** (np.arange(dim) / float(dim - 1))
return np.sum((x * coef) ** 2)
# safety functions
def safe_function1(x):
return x[0]
def safe_function2(x):
return x[1]
# safe seeds
safe_seeds_num = 10
safe_seeds = (np.random.rand(safe_seeds_num, dim) * 2 - 1) * 5
safe_seeds[:, 0] = -np.abs(safe_seeds[:, 0])
safe_seeds[:, 1] = -np.abs(safe_seeds[:, 1])
# evaluation of safe seeds (with multiple safety functions)
seeds_evals = np.array([quadratic(x) for x in safe_seeds])
seeds_safe_evals = np.stack(
[[safe_function1(x), safe_function2(x)] for x in safe_seeds]
)
safety_threshold = np.array([0, 0])
# optimizer (safe CMA-ES)
optimizer = SafeCMA(
sigma=1.0,
safety_threshold=safety_threshold,
safe_seeds=safe_seeds,
seeds_evals=seeds_evals,
seeds_safe_evals=seeds_safe_evals,
)
unsafe_eval_counts = 0
best_eval = np.inf
for generation in range(400):
solutions = []
for _ in range(optimizer.population_size):
# Ask a parameter
x = optimizer.ask()
value = quadratic(x)
safe_value = np.array([safe_function1(x), safe_function2(x)])
# save best eval
best_eval = np.min((best_eval, value))
unsafe_eval_counts += safe_value > safety_threshold
solutions.append((x, value, safe_value))
# Tell evaluation values.
optimizer.tell(solutions)
print(f"#{generation} ({best_eval} {unsafe_eval_counts})")
if optimizer.should_stop():
break
if __name__ == "__main__":
example1()
example2()