|
66 | 66 | " os.path.join(IMDB_DATADIR, \"test\"), shuffle=False, categories=classes\n", |
67 | 67 | ")\n", |
68 | 68 | "\n", |
69 | | - "x_train = np.array(train_data.data)\n", |
70 | | - "y_train = np.array(train_data.target)\n", |
71 | | - "x_test = np.array(test_data.data)\n", |
72 | | - "y_test = np.array(test_data.target)\n", |
| 69 | + "x_train = np.array(train_data.data)[:100]\n", |
| 70 | + "y_train = np.array(train_data.target)[:100]\n", |
| 71 | + "x_test = np.array(test_data.data)[:100]\n", |
| 72 | + "y_test = np.array(test_data.target)[:100]\n", |
73 | 73 | "\n", |
74 | 74 | "print(x_train.shape) # (25000,)\n", |
75 | 75 | "print(y_train.shape) # (25000, 1)\n", |
|
100 | 100 | " overwrite=True, max_trials=1\n", |
101 | 101 | ") # It only tries 1 model as a quick demo.\n", |
102 | 102 | "# Feed the text classifier with training data.\n", |
103 | | - "clf.fit(x_train, y_train, epochs=2)\n", |
| 103 | + "clf.fit(x_train, y_train, epochs=1, batch_size=2)\n", |
104 | 104 | "# Predict with the best model.\n", |
105 | 105 | "predicted_y = clf.predict(x_test)\n", |
106 | 106 | "# Evaluate the best model with testing data.\n", |
|
132 | 132 | " y_train,\n", |
133 | 133 | " # Split the training data and use the last 15% as validation data.\n", |
134 | 134 | " validation_split=0.15,\n", |
| 135 | + " epochs=1,\n", |
| 136 | + " batch_size=2,\n", |
135 | 137 | ")" |
136 | 138 | ] |
137 | 139 | }, |
|
153 | 155 | }, |
154 | 156 | "outputs": [], |
155 | 157 | "source": [ |
156 | | - "split = 5000\n", |
| 158 | + "split = 5\n", |
157 | 159 | "x_val = x_train[split:]\n", |
158 | 160 | "y_val = y_train[split:]\n", |
159 | 161 | "x_train = x_train[:split]\n", |
160 | 162 | "y_train = y_train[:split]\n", |
161 | 163 | "clf.fit(\n", |
162 | 164 | " x_train,\n", |
163 | 165 | " y_train,\n", |
164 | | - " epochs=2,\n", |
| 166 | + " epochs=1,\n", |
165 | 167 | " # Use your own validation set.\n", |
166 | 168 | " validation_data=(x_val, y_val),\n", |
| 169 | + " batch_size=2,\n", |
167 | 170 | ")" |
168 | 171 | ] |
169 | 172 | }, |
|
196 | 199 | "clf = ak.AutoModel(\n", |
197 | 200 | " inputs=input_node, outputs=output_node, overwrite=True, max_trials=1\n", |
198 | 201 | ")\n", |
199 | | - "clf.fit(x_train, y_train, epochs=2)" |
| 202 | + "clf.fit(x_train, y_train, epochs=1, batch_size=2)" |
200 | 203 | ] |
201 | 204 | }, |
202 | 205 | { |
|
226 | 229 | "outputs": [], |
227 | 230 | "source": [ |
228 | 231 | "train_set = tf.data.Dataset.from_tensor_slices(((x_train,), (y_train,))).batch(\n", |
229 | | - " 32\n", |
| 232 | + " 2\n", |
230 | 233 | ")\n", |
231 | | - "test_set = tf.data.Dataset.from_tensor_slices(((x_test,), (y_test,))).batch(32)\n", |
| 234 | + "test_set = tf.data.Dataset.from_tensor_slices(((x_test,), (y_test,))).batch(2)\n", |
232 | 235 | "\n", |
233 | | - "clf = ak.TextClassifier(overwrite=True, max_trials=2)\n", |
| 236 | + "clf = ak.TextClassifier(overwrite=True, max_trials=1)\n", |
234 | 237 | "# Feed the tensorflow Dataset to the classifier.\n", |
235 | | - "clf.fit(train_set, epochs=2)\n", |
| 238 | + "clf.fit(train_set.take(2), epochs=1)\n", |
236 | 239 | "# Predict with the best model.\n", |
237 | | - "predicted_y = clf.predict(test_set)\n", |
| 240 | + "predicted_y = clf.predict(test_set.take(2))\n", |
238 | 241 | "# Evaluate the best model with testing data.\n", |
239 | | - "print(clf.evaluate(test_set))" |
| 242 | + "print(clf.evaluate(test_set.take(2)))" |
240 | 243 | ] |
241 | 244 | }, |
242 | 245 | { |
|
0 commit comments