-
Notifications
You must be signed in to change notification settings - Fork 9
/
train.py
228 lines (188 loc) · 7.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import time
from tqdm import tqdm
import torch
import math
from torch.utils.data import DataLoader
from torch.nn import DataParallel
from nets.attention_model import set_decode_type
from utils.log_utils import log_values
from utils import move_to
from multiprocessing import Pool
import multiprocessing
import signal
def initializer():
"""Ignore CTRL+C in the worker process."""
signal.signal(signal.SIGINT, signal.SIG_IGN)
def get_inner_model(model):
return model.module if isinstance(model, DataParallel) else model
def validate(model, dataset, opts):
# Validate
print('Validating...')
cost = rollout(model, dataset, opts)
avg_cost = cost.mean()
print('Validation overall avg_cost: {} +- {}'.format(
avg_cost, torch.std(cost) / math.sqrt(len(cost))))
return avg_cost
def rollout(model, dataset, opts):
# Put in greedy evaluation mode!
set_decode_type(model, "greedy")
model.eval()
def eval_model_bat(bat):
with torch.no_grad():
cost, _ = model(move_to(bat, opts.device))
return cost.data.cpu()
return torch.cat([
eval_model_bat(bat)
for bat
in tqdm(DataLoader(dataset, batch_size=opts.eval_batch_size), disable=opts.no_progress_bar)
], 0)
def clip_grad_norms(param_groups, max_norm=math.inf):
"""
Clips the norms for all param groups to max_norm and returns gradient norms before clipping
:param optimizer:
:param max_norm:
:param gradient_norms_log:
:return: grad_norms, clipped_grad_norms: list with (clipped) gradient norms per group
"""
grad_norms = [
torch.nn.utils.clip_grad_norm_(
group['params'],
max_norm if max_norm > 0 else math.inf, # Inf so no clipping but still call to calc
norm_type=2
)
for group in param_groups
]
grad_norms_clipped = [min(g_norm, max_norm) for g_norm in grad_norms] if max_norm > 0 else grad_norms
return grad_norms, grad_norms_clipped
def baseline_ls_async_generate(dataset, epoch_size):
baseline_LS_name = 'bl_ls.txt'
from LS import LS1
import numpy as np
def write_async(dataset):
# np.random.seed(i)
for loc in dataset:
loc = loc.numpy()
# print(loc.shape)
tour = LS1.LS(loc, 7)
cost = LS1.dist(loc, tour)
print(cost)
time.sleep(np.random.rand(1) * 2)
f = open(baseline_LS_name, 'a')
f.write(str(cost))
f.write("\n")
f.flush()
f.close()
pool = Pool(initializer=initializer)
locs = [item['loc'] for item in dataset[:]]
n_workers = multiprocessing.cpu_count()
nums = int(epoch_size / n_workers)
try:
for i in range(n_workers):
worker_dataset = locs[i * nums:(i + 1) * nums]
pool.apply_async(write_async, args=(worker_dataset,))
except KeyboardInterrupt:
print("Stop!!!!!!!!!!!!")
pool.terminate()
def train_epoch(model, optimizer, baseline, lr_scheduler, epoch, val_dataset, problem, tb_logger, opts):
print("Start train epoch {}, lr={} for run {}".format(epoch, optimizer.param_groups[0]['lr'], opts.run_name))
step = epoch * (opts.epoch_size // opts.batch_size)
start_time = time.time()
lr_scheduler.step(epoch)
if not opts.no_tensorboard:
tb_logger.log_value('learnrate_pg0', optimizer.param_groups[0]['lr'], step)
# Generate new training data for each epoch
if opts.test_instance is None:
dataset = problem.make_dataset(
size=opts.graph_size, num_samples=opts.epoch_size, distribution=opts.data_distribution)
else:
from test_plot.test_dataset import Test_CSPDataset
dataset = Test_CSPDataset(size=opts.graph_size, num_samples=opts.epoch_size,
cover_range=opts.cover, seed=1234,
sample_mode=True)
val_dataset = Test_CSPDataset(size=opts.graph_size, num_samples=opts.val_size,
cover_range=opts.cover, seed=1234,
sample_mode=True)
training_dataset = baseline.wrap_dataset(dataset)
training_dataloader = DataLoader(training_dataset, batch_size=opts.batch_size, num_workers=1)
# baseline LS
# pool.terminate()
# baseline_ls_async_generate(dataset, opts.epoch_size)
# Put model in train mode!
model.train()
set_decode_type(model, "sampling")
for batch_id, batch in enumerate(tqdm(training_dataloader, disable=opts.no_progress_bar)):
t1=time.time()
train_batch(
model,
optimizer,
baseline,
epoch,
batch_id,
step,
batch,
tb_logger,
opts
)
print("One batch:",time.time()-t1)
step += 1
epoch_duration = time.time() - start_time
print("Finished epoch {}, took {} s".format(epoch, time.strftime('%H:%M:%S', time.gmtime(epoch_duration))))
if (opts.checkpoint_epochs != 0 and epoch % opts.checkpoint_epochs == 0) or epoch == opts.n_epochs - 1:
print('Saving model and state...')
torch.save(
{
'model': get_inner_model(model).state_dict(),
'optimizer': optimizer.state_dict(),
'rng_state': torch.get_rng_state(),
'cuda_rng_state': torch.cuda.get_rng_state_all(),
'baseline': baseline.state_dict()
},
os.path.join(opts.save_dir, 'epoch-{}.pt'.format(epoch))
)
avg_reward = validate(model, val_dataset, opts)
if not opts.no_tensorboard:
tb_logger.log_value('val_avg_reward', avg_reward, step)
baseline.epoch_callback(model, epoch)
def train_batch(
model,
optimizer,
baseline,
epoch,
batch_id,
step,
batch,
tb_logger,
opts
):
x, bl_val = baseline.unwrap_batch(batch)
x = move_to(x, opts.device)
bl_val = move_to(bl_val, opts.device) if bl_val is not None else None
# Evaluate model, get costs and log probabilities
cost, log_likelihood = model(x)
# Evaluate baseline, get baseline loss if any (only for critic)
bl_val, bl_loss = baseline.eval(x, cost) if bl_val is None else (bl_val, 0)
# Baseline LS
# import os
# import numpy as np
# if os.path.exists('bl_ls.txt'):
# bs_costs = np.loadtxt('bl_ls.txt')
# bl_val = bs_costs.mean()
# else:
# bl_val = 0
# print("Current basline_LS: ", bl_val)
# bl_loss = 0
# bl_val = bl_val * 0.8
# Calculate loss
reinforce_loss = ((cost - bl_val) * log_likelihood).mean()
loss = reinforce_loss + bl_loss
# Perform backward pass and optimization step
optimizer.zero_grad()
loss.backward()
# Clip gradient norms and get (clipped) gradient norms for logging
grad_norms = clip_grad_norms(optimizer.param_groups, opts.max_grad_norm)
optimizer.step()
# Logging
if step % int(opts.log_step) == 0:
log_values(cost, grad_norms, epoch, batch_id, step,
log_likelihood, reinforce_loss, bl_loss, tb_logger, opts)