forked from SleepyBag/Statistical-Learning-Methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathForward.py
108 lines (95 loc) · 3.52 KB
/
Forward.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import numpy as np
from rich.console import Console
from rich.table import Table
def forward(state2state, state2observation, initial_state, observation):
"""
Given a HMM with parameter (state2state, state2observation, initial_state)
and the observation,
return the probability of the observation generated by this HMM
state2state is a matrix shaped of [state_size, state_size]
state2observation is a matrix shaped of [state_size, observation_size]
initial_state is a tensor shaped of [state_size], whose each dimension means the probability of each state
observation is a matrix shaped of [data_size, sequence_length]
where
data_size is the number of all the data initial_stateeces
state_size is the number of all the possible states
observation_size is the number of all the possible observations
sequence_length is the length of each sequence
the return value consists of two parts:
the probability of the observation,
and a sequence of probability of each state of each step
"""
state_size, _ = state2state.shape
data_size, sequence_length = observation.shape
seq_state_prob = np.zeros([data_size, sequence_length, state_size])
state_prob = initial_state[None, :]
for i, o in enumerate(observation.T):
# given the parameters of HMM, get the probability of this state with the previous observation
state_prob = state_prob * state2observation.T[o]
seq_state_prob[:, i, :] = state_prob
# the probability of each state in next step
state_prob = state_prob @ state2state
return state_prob.sum(axis=-1), seq_state_prob
if __name__ == '__main__':
def demonstrate(state2state, state2observation, initial_state, observation, desc):
console = Console(markup=False)
prob = forward(state2state, state2observation, initial_state, observation)[0]
# show in table
print(desc)
table = Table('sequence', 'prob')
for o, p in zip(observation, prob):
table.add_row(str(o), str(p))
table.add_row("Sum", str(sum(prob)))
console.print(table)
# ---------------------- Example 1 --------------------------------------------
state2state = np.array(
[[.5, .2, .3],
[.3, .5, .2],
[.2, .3, .5]]
)
state2observation = np.array(
[[.5, .5],
[.4, .6],
[.7, .3]]
)
initial_state = np.array([.2, .4, .4])
observation = np.array([
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
])
demonstrate(state2state, state2observation, initial_state, observation, "Example 1")
# ---------------------- Example 2 --------------------------------------------
state2state = np.array(
[[.5, .5],
[.5, .5]]
)
state2observation = np.array(
[[.5, .5],
[.5, .5]]
)
initial_state = np.array([.5, .5])
observation = np.array([
[0],
[1],
])
demonstrate(state2state, state2observation, initial_state, observation, "Example 2")
# ---------------------- Example 2 --------------------------------------------
state2state = np.array(
[[.0, 1.],
[1., .0]]
)
state2observation = np.array(
[[1., 0.],
[0., 1.]]
)
initial_state = np.array([0., 1.])
observation = np.array([
[1, 0, 1, 0, 1, 0],
])
demonstrate(state2state, state2observation, initial_state, observation, "Example 2")