forked from SleepyBag/Statistical-Learning-Methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLDA.py
89 lines (80 loc) · 3.46 KB
/
LDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
import sys
import os
from pathlib import Path
from itertools import chain
sys.path.append(str(Path(os.path.abspath(__file__)).parent.parent))
from utils import *
def lda(texts, word_prior_cnt=None, topic_prior_cnt=None, k=5, max_iteration=1000, epsilon=1e-8):
"""
given a list of token lists, tokens are integers from [0, n_word].
return the topic distribution of each document,
and the word distribution of each topic.
"""
n_word = max(chain(*texts)) + 1
n_text = len(texts)
n_text_topic = np.zeros([n_text, k]) + epsilon
n_topic_word = np.zeros([k, n_word]) + epsilon
if topic_prior_cnt is not None:
n_text_topic += topic_prior_cnt[None, :]
if word_prior_cnt is not None:
n_topic_word += word_prior_cnt[None, :]
topic = [[np.random.choice(k) for word in text] for text in texts]
for i, (text, text_topic) in enumerate(zip(texts, topic)):
for word, word_topic in zip(text, text_topic):
n_text_topic[i, word_topic] += 1
n_topic_word[word_topic, word] += 1
for step in range(max_iteration):
for i, (text, text_topic) in enumerate(zip(texts, topic)):
for j, (word, word_topic) in enumerate(zip(text, text_topic)):
# reduce the current value from the count
n_text_topic[i, word_topic] -= 1
n_topic_word[word_topic, word] -= 1
# infer the current value from count of others
likelihood_word_topic = n_topic_word[:, word] / n_topic_word.sum(axis=-1)
likelihood_topic = n_text_topic[i, :] / n_text_topic[i, :].sum(axis=-1)
likelihood_topic *= likelihood_word_topic
p_topic = likelihood_topic / likelihood_topic.sum()
# update count
topic[i][j] = np.random.choice(k, p=p_topic)
n_text_topic[i, topic[i][j]] += 1
n_topic_word[topic[i][j], word] += 1
p_topic_when_text = n_text_topic / n_text_topic.sum(axis=-1, keepdims=True)
p_word_when_topic = n_topic_word / n_topic_word.sum(axis=-1, keepdims=True)
return p_topic_when_text, p_word_when_topic
if __name__ == '__main__':
def demonstrate(X, k, desc, **args):
print(desc)
p_topic_when_text, p_word_when_topic = lda(X, k=k, **args)
print("The probabilities of each topic for each text are")
print(np.round(p_topic_when_text, 2))
print("The probabilities of each word for each topic are")
print(np.round(p_word_when_topic, 2))
print("The recovered text-wordcnt matrix is")
print(np.round((p_topic_when_text @ p_word_when_topic), 2))
print()
n_vocab = 9
X = [
[2, 3],
[5, 8],
[1, 7],
[6, 8],
[0, 5],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 2],
[6, 8],
[5, 5, 8],
[0, 2, 7],
[3, 4]
]
demonstrate(X, 3, 'Example 1')
demonstrate(X, 8, 'Example 2: You can recogonize the original matrix from the recovered one if k is large enough')
k = 8
word_prior_cnt = np.ones(n_vocab) * 2
topic_prior_cnt = np.ones(k) * 2
demonstrate(X, k, 'Example 3: The influence of prior', word_prior_cnt=word_prior_cnt, topic_prior_cnt=topic_prior_cnt)
k = 8
word_prior_cnt = np.ones(n_vocab) * 2
topic_prior_cnt = np.zeros(k)
topic_prior_cnt[3] = 5
demonstrate(X, k, 'Example 4: The influence of prior', word_prior_cnt=word_prior_cnt, topic_prior_cnt=topic_prior_cnt)