forked from SleepyBag/Statistical-Learning-Methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_information_gain.py
30 lines (27 loc) · 1.07 KB
/
test_information_gain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from utils import information_gain, entropy
from collections import Counter
from math import fabs
eps = 1e-3
X = [
['青年', '否', '否', '一般'],
['青年', '否', '否', '好'],
['青年', '是', '否', '好'],
['青年', '是', '是', '一般'],
['青年', '否', '否', '一般'],
['中年', '否', '否', '一般'],
['中年', '否', '否', '好'],
['中年', '是', '是', '好'],
['中年', '否', '是', '非常好'],
['中年', '否', '是', '非常好'],
['老年', '否', '是', '非常好'],
['老年', '否', '是', '好'],
['老年', '是', '否', '好'],
['老年', '是', '否', '非常好'],
['老年', '否', '否', '一般'],
]
Y = ['否', '否', '是', '是', '否', '否', '否', '是', '是', '是', '是', '是', '是', '是', '否']
assert(fabs(entropy(Counter(Y).values()) - .971) < eps)
assert(fabs(information_gain(X, Y, 0) - .083) < eps)
assert(fabs(information_gain(X, Y, 1) - .324) < eps)
assert(fabs(information_gain(X, Y, 2) - .420) < eps)
assert(fabs(information_gain(X, Y, 3) - .363) < eps)