forked from EZ4BYG/Func_Opt
-
Notifications
You must be signed in to change notification settings - Fork 1
/
python_Conjugate_Gradient.py
50 lines (44 loc) · 1.75 KB
/
python_Conjugate_Gradient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import sympy
import numpy as np
# 两组符号变量:
x,y,r = sympy.symbols('x y r')
f = (x+y)**2 + (x+1)**2 + (y+3)**2
x1,y1 = sympy.symbols('x1 y1')
# 一阶导数:
fx = sympy.diff(f,x)
fy = sympy.diff(f,y)
# 梯度(列向量):
grad_f1 = np.array([[fx],[fy]])
acc = 0.0001
x_tmp = 10
y_tmp = -1.5
k = 1
print('共轭梯度下降开始:')
d = np.array([[float(fx.evalf(subs={x:x_tmp,y:y_tmp}))],
[float(fy.evalf(subs={x:x_tmp,y:y_tmp}))]]) # 这里有问题!
while 1:
# 上一轮:
# grad_tmp为"梯度临时值",为了方便!
grad_tmp = -np.array([[float(fx.evalf(subs={x:x_tmp,y:y_tmp}))],
[float(fy.evalf(subs={x:x_tmp,y:y_tmp}))]])
# grad_f1_down和grad_f1_up是μ的分母和分子!
# 其中分母在上一轮求取,分子在新一轮求取!
grad_f1_down = np.linalg.norm(grad_tmp)**2
x1 = x_tmp + r*d[0]
y1 = y_tmp + r*d[1]
f_tmp = (x1+y1)**2 + (x1+1)**2 + (y1+3)**2 # 符号表达式不能作为evalf中的值去赋值!!!!!
# r与r_result都是为了求λ的值
r_result = sympy.solve(sympy.diff(f_tmp,r),r)
# 新一轮:
x_tmp = float(x_tmp + r_result*d[0]) # 一定要随时记得转数值类型!!!!!!
y_tmp = float(y_tmp + r_result*d[1])
grad_tmp = -np.array([[float(fx.evalf(subs={x:x_tmp,y:y_tmp}))],
[float(fy.evalf(subs={x:x_tmp,y:y_tmp}))]]) # 这里有问题!
grad_f1_up = np.linalg.norm(grad_tmp)**2
if np.linalg.norm(grad_tmp) <= acc:
print('极值坐标为:(%.5f,%.5f,%.5f)'%(x_tmp,y_tmp,f.evalf(subs={x:x_tmp,y:y_tmp})))
print('迭代次数:%d'%(k))
break
miu = grad_f1_up/grad_f1_down
d = miu*d - grad_tmp
k = k + 1