-
Notifications
You must be signed in to change notification settings - Fork 892
/
Copy pathto_hf_weights.py
492 lines (413 loc) · 16.1 KB
/
to_hf_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
####
# python to_hf_weights.py --input-ckpt ./step_383500 --config ./configs/6B_roto_256.json --output-path ./gpt-j-6B --cpu --dtype fp32
####
import argparse
import io
import multiprocessing
import time
import warnings
import os
import re
from typing import Iterable, List, Union
import json
import jax
import jax.numpy as jnp
from jax.experimental import maps
from pathy import FluidPath, Pathy
import numpy as np
import optax
import torch
from tqdm import tqdm
from mesh_transformer.transformer_shard import CausalTransformer
# xla: tell jax to not pre allocate all device memory
# and only allocate memory as needed.
os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false"
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
DEBUG = False
parser = argparse.ArgumentParser(
description=(
"Used to turn a sharded trained gpt-j checkpoint into pytorch hugging face format."
"This script works best on a slimmed checkpoint (full checkpoints can be used but require ~100gb of ram)."
"Currently, weights must be split into 8 shards for this to work."
"All paths can be local or google cloud storage paths. S3 paths supported as well with `pip install pathy[s3]`."
"Can be run on tpu, or on gpu with `pip install --upgrade jax==0.2.12 jaxlib==0.1.67+cuda110 -f https://storage.googleapis.com/jax-releases/jax_releases.html`"
)
)
parser.add_argument(
"--input-ckpt",
type=str,
required=True,
help='path to model checkpoint folder. Google storage can be used with "gs://bucket/path/step_{n}" format.',
metavar="path",
)
parser.add_argument(
"--config", type=str, required=True, help="Config file location", metavar="path"
)
parser.add_argument(
"--output-path",
required=True,
type=str,
help='Full path to save checkpoint to. Google storage can be used with "gs://bucket/path" format.',
)
parser.add_argument(
"--debug",
action="store_true",
help="Verbose printing.",
)
parser.add_argument(
"--cpu",
action="store_true",
help="Run resharding on cpu instead of searching for jax device (i.e. gpu/tpu). Will default to cpu if jax wasn't installed with `+cuda110` option",
)
parser.add_argument(
"--dtype",
type=str,
default="fp16",
help="One of fp32, fp16 or bf16. Default=fp16. WARNING: Experimental. Make sure to check weights after conversion to make sure dtype information is retained.",
)
def process_args(
input_ckpt: Union[FluidPath, str],
config: Union[FluidPath, str],
output_path: Union[FluidPath, str],
dtype: str = "fp16",
cpu: bool = False,
**kwargs,
):
# validate paths and turn them into Pathy paths.
input_ckpt = Pathy.fluid(str(input_ckpt))
assert input_ckpt.is_dir(), f'no such directory "{input_ckpt}"'
config = Pathy.fluid(str(config))
assert config.is_file(), f'no such file "{config}"'
first_shard = input_ckpt / "shard_0"
assert first_shard.is_dir(), f'no shards found at "{input_ckpt}"'
output_path = Pathy.fluid(str(output_path))
output_path.mkdir(exist_ok=True)
# make sure dtype is valid
assert dtype in {"fp16", "fp32", "bf16"}
np_dtype = np.float16
torch_dtype = torch.float16
if dtype != "fp16":
warnings.warn(
"WARNING: Dtype support other than fp16 is Experimental. Make sure to check weights after conversion to make sure dtype information is retained."
)
if dtype == "bf16":
# np doesn't have bfloat16 so float32 is used to retain information before converting to torch.
np_dtype = np.float32
torch_dtype = torch.bfloat16
elif dtype == "fp32":
np_dtype = np.float32
torch_dtype = torch.float32
# tell jax to run on cpu instead of gpu/tpu
if cpu:
jax.config.update("jax_platform_name", "cpu")
return input_ckpt, config, output_path, np_dtype, torch_dtype
def tree_flatten_with_names(pytree, is_leaf, path="", to_id=id):
id_to_name = {}
if getattr(pytree, "items", None):
for k, v in pytree.items():
k_path = f"{path}/{k}"
if is_leaf(v):
id_to_name[to_id(v)] = k_path
else:
id_to_name = {
**id_to_name,
**tree_flatten_with_names(v, is_leaf=is_leaf, path=k_path),
}
elif getattr(pytree, "__getitem__", None):
for v in pytree:
if is_leaf(v):
id_to_name[to_id(v)] = path
else:
id_to_name = {
**id_to_name,
**tree_flatten_with_names(v, is_leaf=is_leaf, path=path),
}
else:
id_to_name[to_id(pytree)] = path
return id_to_name
def tree_leaves_with_names(pytree, to_id=id):
leaves = jax.tree_leaves(pytree)
is_leaf = lambda x: not isinstance(x, list) and to_id(x) in [
to_id(x) for x in leaves
]
return tree_flatten_with_names(pytree, is_leaf)
def get_tree_leaves_names_reduced(pytree) -> List[str]:
leaves_ids = tree_leaves_with_names(pytree, to_id=id)
leaves = jax.tree_leaves(pytree)
return [leaves_ids[id(l)] for l in leaves]
layer_2_hf_inner_module_id = {
"linear": "attn.q_proj",
"linear_1": "attn.v_proj",
"linear_2": "attn.k_proj",
"linear_3": "attn.out_proj",
"linear_4": "mlp.fc_in",
"linear_5": "mlp.fc_out",
"replicated_layer_norm": "ln_1",
}
projection_layer_2_hf_id_start = {
"linear": "lm_head",
"replicated_layer_norm": "transformer.ln_f",
}
def leave_name_to_hf_layer_id(leaf_name: str):
if not leaf_name.startswith("/params"):
if leaf_name == "/step":
return None
else:
raise NotImplementedError(f"Unknown leaf name: {leaf_name}")
match = re.search(
r"\/params\/causal_transformer_shard\/~\/(?P<module_name>.*)\/~\/(?P<layer_name>.*)\/(?P<wb>.*)",
leaf_name,
)
assert match, f'couldn\'t match pattern against: "{leaf_name}"'
layer_name = match["layer_name"]
module_name = match["module_name"]
wb = match["wb"]
if wb in {"w", "scale"}:
weight_or_bias = "weight"
elif wb in {"b", "offset"}:
weight_or_bias = "bias"
else:
raise NotImplementedError(
f"unknown weight/bais type identifier \"{wb}\" at end of: '{leaf_name}'"
)
# switch statement based on top level module name
if module_name == "embedding_shard":
hf_id = f"transformer.wte.{weight_or_bias}"
elif module_name.startswith("layer"):
module_index = int(module_name.split("_")[-1])
hf_inner_module_id = layer_2_hf_inner_module_id[layer_name]
hf_id = f"transformer.h.{module_index}.{hf_inner_module_id}.{weight_or_bias}"
elif module_name == "projection_shard":
hf_id = f"{projection_layer_2_hf_id_start[layer_name]}.{weight_or_bias}"
else:
raise NotImplementedError(
f"unknown leaf module type \"{module_name}\" in: '{leaf_name}'"
)
if DEBUG:
print(f"{leaf_name} \n\t -> {hf_id}")
return hf_id
# TODO(nijkamp): rewrite this mess
def reshard(x, old_shape, do_shard_ln, do_shard_bias):
# reshards using numpy arrays so as to not fill up jax memory
if len(x.shape) == 1:
out = np.array(x[0:1])
elif len(x.shape) == 2:
if do_shard_ln:
out = np.array(x[0:1])
elif do_shard_bias:
out = np.reshape(np.sum(x, axis=0), old_shape)
else:
out = x.reshape(old_shape)
elif len(x.shape) == 3:
if x.shape[0] * x.shape[2] == old_shape[2]:
out = np.transpose(x, (1, 0, 2)).reshape(old_shape)
elif x.shape[0] * x.shape[1] == old_shape[1]:
out = np.reshape(x, old_shape)
else:
raise NotImplementedError(f"unimplemented, {x.shape}, {old_shape}")
else:
raise NotImplementedError(f"unimplemented, {x}")
return out
def read_npz(fpath: FluidPath):
# read npz file of ndarrays
with fpath.open("rb") as f:
buf = f.read()
f_io = io.BytesIO(buf)
deserialized = np.load(
f_io,
)
assert isinstance(
deserialized, np.lib.npyio.NpzFile
), f"Not an npz file {type(deserialized)=} {f=}"
# arrays are only loaded when accessed. So we need to access them before returning
arrays = []
for i in deserialized:
arr = deserialized[i]
assert isinstance(arr, np.ndarray), f"Not a np.ndarray {type(arr)=} {f=}"
arrays.append(arr)
return arrays
def read_file_shards(
ckpt_dir: FluidPath, fname: str, shards_in: int
) -> List[List[np.ndarray]]:
# read same file like "12.npz" across all shard directories
with multiprocessing.pool.ThreadPool(shards_in) as p:
return list(
p.imap(
read_npz,
[ckpt_dir / f"shard_{i}" / fname for i in range(shards_in)],
)
)
def lazy_read_ckpt_shards(
ckpt_dir: FluidPath, shards_in: int, pieces: int = 16, reverse: bool = True
):
for i in range(pieces):
# iterate through files in direction of choice
fname = f"{(pieces-1) - i}.npz" if reverse else f"{i}.npz"
if DEBUG:
print(f"reading from {fname}")
file_shards = read_file_shards(ckpt_dir, fname, shards_in)
# iterate over layers in file returning all shards for each
file_shards = list(zip(*file_shards))
if reverse:
file_shards = reversed(file_shards)
yield from file_shards
def unshard_leave(
leave_shards: Iterable[np.ndarray],
leave_name: str,
old_shape: List[int],
np_dtype=np.float16,
):
# reshard all leave shards into single shard.
# stack leave shards into single np.ndarray
x = np.stack(leave_shards)
# assert isinstance(x, jnp.ndarray)
# As far as i can tell, this just re labels the dtype of arrays
# labeled with "V2" dtype. In theory, V2 was just an alias for bfloat16
# which needs to be relabeled in order for it to be understood.
if x.dtype == np.dtype("V2"):
x.dtype = jnp.bfloat16
if DEBUG:
print(f"RESHARDING: {leave_name=} {x.shape=} {old_shape=}") # type: ignore
# transform sharded array to match old_shape
x = reshard(
x,
old_shape,
do_shard_bias=leave_name.endswith("embedding_shard/~/linear/b")
or leave_name.endswith("linear_5/b"),
do_shard_ln=leave_name.endswith("replicated_layer_norm/offset")
or leave_name.endswith("replicated_layer_norm/scale"),
)
assert (
x.shape == old_shape
), f"Incompatible checkpoints {x.shape} vs {old_shape} {leave_name}"
return x.astype(np_dtype)
def save_pytree_as_hf(
pytree,
input_ckpt: FluidPath,
shards_in: int,
output_path: FluidPath,
n_layers: int = 28,
np_dtype: type = np.float16,
torch_dtype: torch.dtype = torch.float16,
n_seq: int = 2048,
):
# Loads layers and names in reverse order to avoid loading unneeded opt_state layers
# that are at the front of full (i.e. not slim) models.
old_leave_shapes = [old.shape for old in jax.tree_flatten(pytree)[0]]
leave_names = get_tree_leaves_names_reduced(pytree)
del pytree
assert len(old_leave_shapes) == len(
leave_names
), f"{len(old_leave_shapes)=} {len(leave_names)=}"
# get generator that emits all shards of leaves from npz files in reverse order
loaded_shards_in = lazy_read_ckpt_shards(input_ckpt, shards_in, reverse=True)
print("Reading and transforming layers/shards. This may take a while.")
hf_checkpoint = {}
wte_first = None # saves first instance of a wte weight in order to combine it with the second.
# Reverse iteration to grab leave_names and old leaves from the back
for i in tqdm(
reversed(range(len(leave_names))),
desc="Reading/Transforming Layers",
total=len(leave_names),
):
# load next shard with correstponding leave name and old shape
x = next(loaded_shards_in)
leave_name = leave_names[i]
old_shape = old_leave_shapes[i]
hf_layer_id = leave_name_to_hf_layer_id(leave_name)
# If leave is not needed in hf model (/step')
if not hf_layer_id:
continue
x = unshard_leave(x, leave_name, old_shape, np_dtype=np_dtype)
# remove first empty dimension and transpose.
x = torch.tensor(x.squeeze(0), dtype=torch_dtype).T
# wte embedding weights/bias need to be combined since hf model has no wte.embedding.bias
if hf_layer_id.startswith("transformer.wte"):
# un/re-transpose since wte weight is only leave that shouldn't be transposed
x = x.T
# store first weight/bias then skip saving
if wte_first is None:
wte_first = x
continue
# combine second wte bias/weight with first then move on to saving with weight name
else:
x = x + wte_first
hf_layer_id = "transformer.wte.weight"
# save params as single file with proper hf id mapped to them in save_map
hf_checkpoint[hf_layer_id] = x
# add attention bias layers
attn_bias_weights = torch.tril(torch.ones((n_seq, n_seq), dtype=torch.bool)).view(
1, 1, n_seq, n_seq
)
attn_masked_bias_weights = torch.tensor(-1e9, dtype=torch_dtype)
for i in range(n_layers):
hf_checkpoint[f"transformer.h.{i}.attn.bias"] = attn_bias_weights
hf_checkpoint[f"transformer.h.{i}.attn.masked_bias"] = attn_masked_bias_weights
torch.save(hf_checkpoint, (output_path / "pytorch_model.bin").open(mode="wb"))
def save_config_to_hf_format(params: dict, torch_dtype: str, output_path: FluidPath):
config = {
"activation_function": "gelu_new",
"architectures": ["GPTJForCausalLM"],
"attn_pdrop": 0.0,
"bos_token_id": 50256,
"embd_pdrop": 0.0,
"eos_token_id": 50256,
"gradient_checkpointing": False,
"initializer_range": 0.02,
"layer_norm_epsilon": 1e-05,
"model_type": "gptj",
"n_embd": params["d_model"],
"n_head": params["n_heads"],
"n_layer": params["layers"],
"n_positions": params["seq"],
"rotary_dim": params["pe_rotary_dims"],
"summary_activation": None,
"summary_first_dropout": 0.1,
"summary_proj_to_labels": True,
"summary_type": "cls_index",
"summary_use_proj": True,
"transformers_version": "4.10.0.dev0",
"tokenizer_class": "GPT2Tokenizer",
"task_specific_params": {
"text-generation": {"do_sample": True, "temperature": 1.0, "max_length": 50}
},
"torch_dtype": str(torch_dtype).split(".")[-1],
"use_cache": True,
"vocab_size": params["n_vocab"],
}
with (output_path / "config.json").open("w") as f:
json.dump(config, f, indent=2)
def save_sharded_to_hf_format(
input_ckpt: Union[FluidPath, str],
params: dict,
output_path: Union[FluidPath, str],
cpu: bool = False,
dtype: str = "fp16",
):
devices = np.array([jax.devices()[0]]).reshape((1, 1))
with maps.mesh(devices, ("dp", "mp")):
params_local = params.copy()
params_local["cores_per_replica"] = maps.thread_resources.env.shape["mp"]
network = CausalTransformer(params_local)
save_pytree_as_hf(
network.state,
input_ckpt=input_ckpt,
shards_in=params["cores_per_replica"],
output_path=output_path,
n_layers=params["layers"],
np_dtype=np_dtype,
torch_dtype=torch_dtype,
n_seq=params["seq"],
)
if __name__ == "__main__":
args = vars(parser.parse_args())
DEBUG = args["debug"]
start = time.time()
input_ckpt, config, output_path, np_dtype, torch_dtype = process_args(**args)
params = json.load(open(config))
params["optimizer"] = optax.scale(0)
save_sharded_to_hf_format(input_ckpt, params, output_path, np_dtype, torch_dtype)
save_config_to_hf_format(params, torch_dtype, output_path)
print(
f"HF weights created in {(time.time() - start):.0f}s \"{args['output_path']}\""
)