forked from Traumflug/Teacup_Firmware
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dda.c
672 lines (585 loc) · 20 KB
/
dda.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
#include "dda.h"
/** \file
\brief Digital differential analyser - this is where we figure out which steppers need to move, and when they need to move
*/
#include <string.h>
#include <stdlib.h>
#include <avr/interrupt.h>
#include "timer.h"
#include "serial.h"
#include "sermsg.h"
#include "dda_queue.h"
#include "debug.h"
#include "sersendf.h"
#include "pinio.h"
#include "config.h"
//#include "graycode.c"
#ifdef DC_EXTRUDER
#include "heater.h"
#endif
// Used in distance calculation during DDA setup
/// micrometers per step X
#define UM_PER_STEP_X 1000L / ((uint32_t) STEPS_PER_MM_X)
/// micrometers per step Y
#define UM_PER_STEP_Y 1000L / ((uint32_t) STEPS_PER_MM_Y)
/// micrometers per step Z
#define UM_PER_STEP_Z 1000L / ((uint32_t) STEPS_PER_MM_Z)
/// micrometers per step E
#define UM_PER_STEP_E 1000L / ((uint32_t) STEPS_PER_MM_E)
/// step timeout
uint8_t steptimeout = 0;
/*
position tracking
*/
/// \var startpoint
/// \brief target position of last move in queue
TARGET startpoint __attribute__ ((__section__ (".bss")));
/// \var current_position
/// \brief actual position of extruder head
/// \todo make current_position = real_position (from endstops) + offset from G28 and friends
TARGET current_position __attribute__ ((__section__ (".bss")));
/*
utility functions
*/
// courtesy of http://www.flipcode.com/archives/Fast_Approximate_Distance_Functions.shtml
/*! linear approximation 2d distance formula
\param dx distance in X plane
\param dy distance in Y plane
\return 3-part linear approximation of \f$\sqrt{\Delta x^2 + \Delta y^2}\f$
see http://www.flipcode.com/archives/Fast_Approximate_Distance_Functions.shtml
*/
uint32_t approx_distance( uint32_t dx, uint32_t dy )
{
uint32_t min, max, approx;
if ( dx < dy )
{
min = dx;
max = dy;
} else {
min = dy;
max = dx;
}
approx = ( max * 1007 ) + ( min * 441 );
if ( max < ( min << 4 ))
approx -= ( max * 40 );
// add 512 for proper rounding
return (( approx + 512 ) >> 10 );
}
// courtesy of http://www.oroboro.com/rafael/docserv.php/index/programming/article/distance
/*! linear approximation 3d distance formula
\param dx distance in X plane
\param dy distance in Y plane
\param dz distance in Z plane
\return 3-part linear approximation of \f$\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}\f$
see http://www.oroboro.com/rafael/docserv.php/index/programming/article/distance
*/
uint32_t approx_distance_3( uint32_t dx, uint32_t dy, uint32_t dz )
{
uint32_t min, med, max, approx;
if ( dx < dy )
{
min = dy;
med = dx;
} else {
min = dx;
med = dy;
}
if ( dz < min )
{
max = med;
med = min;
min = dz;
} else if ( dz < med ) {
max = med;
med = dz;
} else {
max = dz;
}
approx = ( max * 860 ) + ( med * 851 ) + ( min * 520 );
if ( max < ( med << 1 )) approx -= ( max * 294 );
if ( max < ( min << 2 )) approx -= ( max * 113 );
if ( med < ( min << 2 )) approx -= ( med * 40 );
// add 512 for proper rounding
return (( approx + 512 ) >> 10 );
}
/*!
integer square root algorithm
\param a find square root of this number
\return sqrt(a - 1) < returnvalue <= sqrt(a)
see http://www.embedded-systems.com/98/9802fe2.htm
*/
// courtesy of http://www.embedded-systems.com/98/9802fe2.htm
uint16_t int_sqrt(uint32_t a) {
uint32_t rem = 0;
uint32_t root = 0;
uint16_t i;
for (i = 0; i < 16; i++) {
root <<= 1;
rem = ((rem << 2) + (a >> 30));
a <<= 2;
root++;
if (root <= rem) {
rem -= root;
root++;
}
else
root--;
}
return (uint16_t) ((root >> 1) & 0xFFFFL);
}
// this is an ultra-crude pseudo-logarithm routine, such that:
// 2 ^ msbloc(v) >= v
/*! crude logarithm algorithm
\param v value to find \f$log_2\f$ of
\return floor(log(v) / log(2))
*/
const uint8_t msbloc (uint32_t v) {
uint8_t i;
uint32_t c;
for (i = 31, c = 0x80000000; i; i--) {
if (v & c)
return i;
c >>= 1;
}
return 0;
}
/*! CREATE a dda given current_position and a target, save to passed location so we can write directly into the queue
\param *dda pointer to a dda_queue entry to overwrite
\param *target the target position of this move
\ref startpoint the beginning position of this move
This function does a /lot/ of math. It works out directions for each axis, distance travelled, the time between the first and second step
It also pre-fills any data that the selected accleration algorithm needs, and can be pre-computed for the whole move.
This algorithm is probably the main limiting factor to print speed in terms of firmware limitations
*/
void dda_create(DDA *dda, TARGET *target) {
uint32_t distance, c_limit, c_limit_calc;
// initialise DDA to a known state
dda->allflags = 0;
if (debug_flags & DEBUG_DDA)
serial_writestr_P(PSTR("\n{DDA_CREATE: ["));
// we end at the passed target
memcpy(&(dda->endpoint), target, sizeof(TARGET));
dda->x_delta = labs(target->X - startpoint.X);
dda->y_delta = labs(target->Y - startpoint.Y);
dda->z_delta = labs(target->Z - startpoint.Z);
dda->e_delta = labs(target->E - startpoint.E);
dda->x_direction = (target->X >= startpoint.X)?1:0;
dda->y_direction = (target->Y >= startpoint.Y)?1:0;
dda->z_direction = (target->Z >= startpoint.Z)?1:0;
dda->e_direction = (target->E >= startpoint.E)?1:0;
if (debug_flags & DEBUG_DDA)
sersendf_P(PSTR("%ld,%ld,%ld,%ld] ["), target->X - startpoint.X, target->Y - startpoint.Y, target->Z - startpoint.Z, target->E - startpoint.E);
dda->total_steps = dda->x_delta;
if (dda->y_delta > dda->total_steps)
dda->total_steps = dda->y_delta;
if (dda->z_delta > dda->total_steps)
dda->total_steps = dda->z_delta;
if (dda->e_delta > dda->total_steps)
dda->total_steps = dda->e_delta;
if (debug_flags & DEBUG_DDA)
sersendf_P(PSTR("ts:%lu"), dda->total_steps);
if (dda->total_steps == 0) {
dda->nullmove = 1;
}
else {
// get steppers ready to go
steptimeout = 0;
power_on();
x_enable();
y_enable();
// Z is enabled in dda_start()
e_enable();
// since it's unusual to combine X, Y and Z changes in a single move on reprap, check if we can use simpler approximations before trying the full 3d approximation.
if (dda->z_delta == 0)
distance = approx_distance(dda->x_delta * UM_PER_STEP_X, dda->y_delta * UM_PER_STEP_Y);
else if (dda->x_delta == 0 && dda->y_delta == 0)
distance = dda->z_delta * UM_PER_STEP_Z;
else
distance = approx_distance_3(dda->x_delta * UM_PER_STEP_X, dda->y_delta * UM_PER_STEP_Y, dda->z_delta * UM_PER_STEP_Z);
if (distance < 2)
distance = dda->e_delta * UM_PER_STEP_E;
if (debug_flags & DEBUG_DDA)
sersendf_P(PSTR(",ds:%lu"), distance);
#ifdef ACCELERATION_TEMPORAL
// bracket part of this equation in an attempt to avoid overflow: 60 * 16MHz * 5mm is >32 bits
uint32_t move_duration = distance * (60 * F_CPU / startpoint.F);
#else
dda->x_counter = dda->y_counter = dda->z_counter = dda->e_counter =
-(dda->total_steps >> 1);
// pre-calculate move speed in millimeter microseconds per step minute for less math in interrupt context
// mm (distance) * 60000000 us/min / step (total_steps) = mm.us per step.min
// note: um (distance) * 60000 == mm * 60000000
// so in the interrupt we must simply calculate
// mm.us per step.min / mm per min (F) = us per step
// break this calculation up a bit and lose some precision because 300,000um * 60000 is too big for a uint32
// calculate this with a uint64 if you need the precision, but it'll take longer so routines with lots of short moves may suffer
// 2^32/6000 is about 715mm which should be plenty
// changed * 10 to * (F_CPU / 100000) so we can work in cpu_ticks rather than microseconds.
// timer.c setTimer() routine altered for same reason
// changed distance * 6000 .. * F_CPU / 100000 to
// distance * 2400 .. * F_CPU / 40000 so we can move a distance of up to 1800mm without overflowing
uint32_t move_duration = ((distance * 2400) / dda->total_steps) * (F_CPU / 40000);
#endif
// similarly, find out how fast we can run our axes.
// do this for each axis individually, as the combined speed of two or more axes can be higher than the capabilities of a single one.
c_limit = 0;
// check X axis
c_limit_calc = ( (dda->x_delta * (UM_PER_STEP_X * 2400L)) / dda->total_steps * (F_CPU / 40000) / MAXIMUM_FEEDRATE_X) << 8;
if (c_limit_calc > c_limit)
c_limit = c_limit_calc;
// check Y axis
c_limit_calc = ( (dda->y_delta * (UM_PER_STEP_Y * 2400L)) / dda->total_steps * (F_CPU / 40000) / MAXIMUM_FEEDRATE_Y) << 8;
if (c_limit_calc > c_limit)
c_limit = c_limit_calc;
// check Z axis
c_limit_calc = ( (dda->z_delta * (UM_PER_STEP_Z * 2400L)) / dda->total_steps * (F_CPU / 40000) / MAXIMUM_FEEDRATE_Z) << 8;
if (c_limit_calc > c_limit)
c_limit = c_limit_calc;
// check E axis
c_limit_calc = ( (dda->e_delta * (UM_PER_STEP_E * 2400L)) / dda->total_steps * (F_CPU / 40000) / MAXIMUM_FEEDRATE_E) << 8;
if (c_limit_calc > c_limit)
c_limit = c_limit_calc;
#ifdef ACCELERATION_REPRAP
// c is initial step time in IOclk ticks
dda->c = (move_duration / startpoint.F) << 8;
if (dda->c < c_limit)
dda->c = c_limit;
dda->end_c = (move_duration / target->F) << 8;
if (dda->end_c < c_limit)
dda->end_c = c_limit;
if (debug_flags & DEBUG_DDA)
sersendf_P(PSTR(",md:%lu,c:%lu"), move_duration, dda->c >> 8);
if (dda->c != dda->end_c) {
uint32_t stF = startpoint.F / 4;
uint32_t enF = target->F / 4;
// now some constant acceleration stuff, courtesy of http://www.embedded.com/columns/technicalinsights/56800129?printable=true
uint32_t ssq = (stF * stF);
uint32_t esq = (enF * enF);
int32_t dsq = (int32_t) (esq - ssq) / 4;
uint8_t msb_ssq = msbloc(ssq);
uint8_t msb_tot = msbloc(dda->total_steps);
// the raw equation WILL overflow at high step rates, but 64 bit math routines take waay too much space
// at 65536 mm/min (1092mm/s), ssq/esq overflows, and dsq is also close to overflowing if esq/ssq is small
// but if ssq-esq is small, ssq/dsq is only a few bits
// we'll have to do it a few different ways depending on the msb locations of each
if ((msb_tot + msb_ssq) <= 30) {
// we have room to do all the multiplies first
if (debug_flags & DEBUG_DDA)
serial_writechar('A');
dda->n = ((int32_t) (dda->total_steps * ssq) / dsq) + 1;
}
else if (msb_tot >= msb_ssq) {
// total steps has more precision
if (debug_flags & DEBUG_DDA)
serial_writechar('B');
dda->n = (((int32_t) dda->total_steps / dsq) * (int32_t) ssq) + 1;
}
else {
// otherwise
if (debug_flags & DEBUG_DDA)
serial_writechar('C');
dda->n = (((int32_t) ssq / dsq) * (int32_t) dda->total_steps) + 1;
}
if (debug_flags & DEBUG_DDA)
sersendf_P(PSTR("\n{DDA:CA end_c:%lu, n:%ld, md:%lu, ssq:%lu, esq:%lu, dsq:%lu, msbssq:%u, msbtot:%u}\n"), dda->end_c >> 8, dda->n, move_duration, ssq, esq, dsq, msb_ssq, msb_tot);
dda->accel = 1;
}
else
dda->accel = 0;
#elif defined ACCELERATION_RAMPING
// add the last bit of dda->total_steps to always round up
dda->ramp_steps = dda->total_steps / 2 + (dda->total_steps & 1);
dda->step_no = 0;
// c is initial step time in IOclk ticks
dda->c = ACCELERATION_STEEPNESS << 8;
dda->c_min = (move_duration / target->F) << 8;
if (dda->c_min < c_limit)
dda->c_min = c_limit;
dda->n = 1;
dda->ramp_state = RAMP_UP;
#elif defined ACCELERATION_TEMPORAL
dda->x_counter = dda->x_step_interval = move_duration / dda->x_delta;
dda->y_counter = dda->y_step_interval = move_duration / dda->y_delta;
dda->z_counter = dda->z_step_interval = move_duration / dda->z_delta;
dda->e_counter = dda->e_step_interval = move_duration / dda->e_delta;
dda->c = dda->x_step_interval;
if (dda->y_step_interval < dda->c)
dda->c = dda->y_step_interval;
if (dda->z_step_interval < dda->c)
dda->c = dda->z_step_interval;
if (dda->e_step_interval < dda->c)
dda->c = dda->e_step_interval;
dda->c <<= 8;
#else
dda->c = (move_duration / target->F) << 8;
if (dda->c < c_limit)
dda->c = c_limit;
#endif
}
if (debug_flags & DEBUG_DDA)
serial_writestr_P(PSTR("] }\n"));
// next dda starts where we finish
memcpy(&startpoint, target, sizeof(TARGET));
// if E is relative, reset it here
#ifndef E_ABSOLUTE
startpoint.E = 0;
#endif
}
/*! Start a prepared DDA
\param *dda pointer to entry in dda_queue to start
This function actually begins the move described by the passed DDA entry.
We set direction and enable outputs, and set the timer for the first step from the precalculated value.
We also mark this DDA as running, so other parts of the firmware know that something is happening
*/
void dda_start(DDA *dda) {
// called from interrupt context: keep it simple!
if (dda->nullmove) {
// just change speed?
current_position.F = dda->endpoint.F;
// keep dda->live = 0
}
else {
/* if (dda->waitfor_temp) {
#ifndef REPRAP_HOST_COMPATIBILITY
serial_writestr_P(PSTR("Waiting for target temp\n"));
#endif
}
else {*/
// get ready to go
steptimeout = 0;
if (dda->z_delta)
z_enable();
// set direction outputs
x_direction(dda->x_direction);
y_direction(dda->y_direction);
z_direction(dda->z_direction);
e_direction(dda->e_direction);
#ifdef DC_EXTRUDER
if (dda->e_delta)
heater_set(DC_EXTRUDER, DC_EXTRUDER_PWM);
#endif
// }
// ensure this dda starts
dda->live = 1;
// set timeout for first step
setTimer(dda->c >> 8);
}
}
/*! STEP
\param *dda the current move
This is called from our timer interrupt every time a step needs to occur.
We first work out which axes need to step, and generate step pulses for them
Then we re-enable global interrupts so serial data reception and other important things can occur while we do some math.
Next, we work out how long until our next step using the selected acceleration algorithm and set the timer.
Then we decide if this was the last step for this move, and if so mark this dda as dead so next timer interrupt we can start a new one.
Finally we de-assert any asserted step pins.
\todo take into account the time that interrupt takes to run
*/
void dda_step(DDA *dda) {
// called from interrupt context! keep it as simple as possible
uint8_t did_step = 0;
#ifdef ACCELERATION_TEMPORAL
if (dda->x_counter <= 0) {
if ((current_position.X != dda->endpoint.X) /* &&
(x_max() != dda->x_direction) && (x_min() == dda->x_direction) */) {
x_step();
if (dda->x_direction)
current_position.X++;
else
current_position.X--;
}
dda->x_counter += dda->x_step_interval;
dda->x_delta--;
}
if (dda->y_counter <= 0) {
if ((current_position.Y != dda->endpoint.Y) /* &&
(y_max() != dda->y_direction) && (y_min() == dda->y_direction) */) {
y_step();
if (dda->y_direction)
current_position.Y++;
else
current_position.Y--;
}
dda->y_counter += dda->y_step_interval;
dda->y_delta--;
}
if (dda->z_counter <= 0) {
if ((current_position.Z != dda->endpoint.Z) /* &&
(z_max() != dda->z_direction) && (z_min() == dda->z_direction) */) {
z_step();
if (dda->z_direction)
current_position.Z++;
else
current_position.Z--;
}
dda->z_counter += dda->z_step_interval;
dda->z_delta--;
}
if (dda->e_counter <= 0) {
if ((current_position.E != dda->endpoint.E) /* &&
(e_max() != dda->e_direction) && (e_min() == dda->e_direction) */) {
e_step();
if (dda->e_direction)
current_position.E++;
else
current_position.E--;
}
dda->e_counter += dda->e_step_interval;
dda->e_delta--;
}
#else
if ((current_position.X != dda->endpoint.X) /* &&
(x_max() != dda->x_direction) && (x_min() == dda->x_direction) */) {
dda->x_counter -= dda->x_delta;
if (dda->x_counter < 0) {
x_step();
did_step = 1;
if (dda->x_direction)
current_position.X++;
else
current_position.X--;
dda->x_counter += dda->total_steps;
}
}
if ((current_position.Y != dda->endpoint.Y) /* &&
(y_max() != dda->y_direction) && (y_min() == dda->y_direction) */) {
dda->y_counter -= dda->y_delta;
if (dda->y_counter < 0) {
y_step();
did_step = 1;
if (dda->y_direction)
current_position.Y++;
else
current_position.Y--;
dda->y_counter += dda->total_steps;
}
}
if ((current_position.Z != dda->endpoint.Z) /* &&
(z_max() != dda->z_direction) && (z_min() == dda->z_direction) */) {
dda->z_counter -= dda->z_delta;
if (dda->z_counter < 0) {
z_step();
did_step = 1;
if (dda->z_direction)
current_position.Z++;
else
current_position.Z--;
dda->z_counter += dda->total_steps;
}
}
if (current_position.E != dda->endpoint.E) {
dda->e_counter -= dda->e_delta;
if (dda->e_counter < 0) {
e_step();
did_step = 1;
if (dda->e_direction)
current_position.E++;
else
current_position.E--;
dda->e_counter += dda->total_steps;
}
}
#endif
#if STEP_INTERRUPT_INTERRUPTIBLE
// since we have sent steps to all the motors that will be stepping and the rest of this function isn't so time critical,
// this interrupt can now be interruptible
// however we must ensure that we don't step again while computing the below, so disable *this* interrupt but allow others to fire
// disableTimerInterrupt();
sei();
#endif
#ifdef ACCELERATION_REPRAP
// linear acceleration magic, courtesy of http://www.embedded.com/columns/technicalinsights/56800129?printable=true
if (dda->accel) {
if (
((dda->n > 0) && (dda->c > dda->end_c)) ||
((dda->n < 0) && (dda->c < dda->end_c))
) {
dda->c = (int32_t) dda->c - ((int32_t) (dda->c * 2) / dda->n);
dda->n += 4;
}
else if (dda->c != dda->end_c) {
dda->c = dda->end_c;
}
// else we are already at target speed
}
#endif
#ifdef ACCELERATION_RAMPING
// - algorithm courtesy of http://www.embedded.com/columns/technicalinsights/56800129?printable=true
// - for simplicity, taking even/uneven number of steps into account dropped
// - number of steps moved is always accurate, speed might be one step off
switch (dda->ramp_state) {
case RAMP_UP:
case RAMP_MAX:
if (dda->step_no >= dda->ramp_steps) {
// RAMP_UP: time to decelerate before reaching maximum speed
// RAMP_MAX: time to decelerate
dda->ramp_state = RAMP_DOWN;
dda->n = -((int32_t)2) - dda->n;
}
if (dda->ramp_state == RAMP_MAX)
break;
case RAMP_DOWN:
dda->n += 4;
// be careful of signedness!
dda->c = (int32_t)dda->c - ((int32_t)(dda->c * 2) / dda->n);
if (dda->c <= dda->c_min) {
// maximum speed reached
dda->c = dda->c_min;
dda->ramp_state = RAMP_MAX;
dda->ramp_steps = dda->total_steps - dda->step_no;
}
break;
}
dda->step_no++;
#endif
#ifdef ACCELERATION_TEMPORAL
dda->c = dda->x_counter;
if (dda->y_counter < dda->c)
dda->c = dda->y_counter;
if (dda->z_counter < dda->c)
dda->c = dda->z_counter;
if (dda->e_counter < dda->c)
dda->c = dda->e_counter;
if (dda->x_delta)
dda->x_counter -= dda->c;
if (dda->y_delta)
dda->y_counter -= dda->c;
if (dda->z_delta)
dda->z_counter -= dda->c;
if (dda->e_delta)
dda->e_counter -= dda->c;
if (
(dda->x_delta > 0) ||
(dda->y_delta > 0) ||
(dda->z_delta > 0) ||
(dda->e_delta > 0))
did_step = 1;
dda->c <<= 8;
#endif
if (did_step) {
// we stepped, reset timeout
steptimeout = 0;
// if we could do anything at all, we're still running
// otherwise, must have finished
}
else {
dda->live = 0;
// if E is relative reset it
#ifndef E_ABSOLUTE
current_position.E = 0;
#endif
// linear acceleration code doesn't alter F during a move, so we must update it here
// in theory, we *could* update F every step, but that would require a divide in interrupt context which should be avoided if at all possible
current_position.F = dda->endpoint.F;
#ifdef DC_EXTRUDER
heater_set(DC_EXTRUDER, 0);
#endif
// z stepper is only enabled while moving
z_disable();
}
setTimer(dda->c >> 8);
// turn off step outputs, hopefully they've been on long enough by now to register with the drivers
// if not, too bad. or insert a (very!) small delay here, or fire up a spare timer or something.
// we also hope that we don't step before the drivers register the low- limit maximum speed if you think this is a problem.
unstep();
}