-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProgram.cs
450 lines (392 loc) · 18.7 KB
/
Program.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
using System.CommandLine;
using System.CommandLine.NamingConventionBinder;
using System.Reflection;
using System.Text;
using SixLabors.ImageSharp;
using SixLabors.ImageSharp.PixelFormats;
using SixLabors.ImageSharp.Processing;
using ShellProgressBar;
using subtitle_ocr_console.OCR;
using subtitle_ocr_console.Subtitles.PGS;
using subtitle_ocr_console.Subtitles.SRT;
using subtitle_ocr_console.Subtitles.Segmentation;
using subtitle_ocr_console.Utils;
namespace subtitle_ocr_console;
static class ProgramEntry
{
static void Main(string[] args)
{
// Create command line argument parsers
var pgsCommand = new Command("parse-pgs", "Parses a PGS subtitle file and writes its images");
pgsCommand.Add(new Argument<FileInfo>("path", "Path to PGS file").ExistingOnly());
pgsCommand.Add(new Argument<DirectoryInfo>("out-dir", "Directory path to save images to").ExistingOnly());
pgsCommand.Handler = CommandHandler.Create(ParsePGS);
var codecCommand = new Command("generate-codec", "Generates a codec");
codecCommand.Add(new Argument<FileInfo>("out-path", "Path to save the codec to").LegalFilePathsOnly());
codecCommand.Add(new Argument<string>("letter-characters", "A single string containing all letters in codec"));
codecCommand.Add(new Argument<string>("digit-characters", "A single string containing all digits in codec"));
codecCommand.Add(new Argument<string>("punctuation-characters", "A single string containing all punctuation characters in codec"));
codecCommand.Add(new Argument<string>("whitespace-characters", "A single string containing all whitespace characters in codec"));
codecCommand.Handler = CommandHandler.Create(GenerateCodec);
var dataCommand = new Command("generate-data", "Generates training/validation data for the CRNN model");
dataCommand.Add(new Argument<int>("size", "Size of the data set (number of images)"));
dataCommand.Add(new Argument<DirectoryInfo>("out-dir", "Directory path to save data to").ExistingOnly());
dataCommand.Add(new Argument<FileInfo>("codec-path", "Path to the codec").ExistingOnly());
dataCommand.Add(new Argument<FileInfo[]>("line-data", "Paths to files containing line data text").ExistingOnly());
dataCommand.Add(new Option<int>(
new string[] { "--max-chars", "-c" },
() => 75,
"Max number of characters (roughly) per image"
));
dataCommand.Add(new Option<int>(
new string[] { "--rand-rate", "-r" },
() => 4,
"Rate of random images. One random image for each <rand-rate> images from text data, or -1 for no random images"
));
dataCommand.Add(new Option<bool>(
new string[] { "--validation", "-v" },
"Whether to generate validation or training data. Validation data uses different fonts and no data augmentation"
));
dataCommand.Handler = CommandHandler.Create(GenerateData);
var lmCommand = new Command("generate-lm", "Generates a language model");
lmCommand.Add(new Argument<FileInfo>("out-path", "Path to save the language model to").LegalFilePathsOnly());
lmCommand.Add(new Argument<FileInfo>("codec-path", "Path to the codec").ExistingOnly());
lmCommand.Add(new Argument<FileInfo[]>("line-data", "Paths to files containing line data text").ExistingOnly());
lmCommand.Handler = CommandHandler.Create(GenerateLanguageModel);
var inferCommand = new Command("test-inference", "Runs a trained model on the given images");
inferCommand.Add(new Argument<FileInfo>("model-path", "Path to the trained model").ExistingOnly());
inferCommand.Add(new Argument<FileInfo>("codec-path", "Path to the codec").ExistingOnly());
inferCommand.Add(new Argument<FileInfo[]>("image-paths", "Paths to images to recognize").ExistingOnly());
inferCommand.Add(new Option<FileInfo>(
new string[] { "--language-model", "-lm" },
"Path to the language model").ExistingOnly()
);
inferCommand.Handler = CommandHandler.Create(TestInference);
var evalModelCommand = new Command("eval-model", "Evaluates the performance of a model on the given dataset");
evalModelCommand.Add(new Argument<FileInfo>("model-path", "Path to the trained model").ExistingOnly());
evalModelCommand.Add(new Argument<FileInfo>("codec-path", "Path to the codec").ExistingOnly());
evalModelCommand.Add(new Argument<DirectoryInfo>("data-dir", "Path of directory containing the dataset").ExistingOnly());
evalModelCommand.Add(new Option<FileInfo>(
new string[] { "--language-model", "-lm" },
"Path to the language model").ExistingOnly()
);
evalModelCommand.Add(new Option<int>(
new string[] { "--skip", "-s" },
() => -1,
"Used to skip random images. For example, if rand-rate was 5 when generating the data, supply 5 here")
);
evalModelCommand.Handler = CommandHandler.Create(EvalModel);
var evalTessCommand = new Command("eval-tesseract", "Evaluates the performance of Tesseract on the given dataset");
evalTessCommand.Add(new Argument<DirectoryInfo>("tessdata-path", "Path to the tessdata directory").ExistingOnly());
evalTessCommand.Add(new Argument<string>("language", "Tesseract language string"));
evalTessCommand.Add(new Argument<FileInfo>("codec-path", "Path to the codec").ExistingOnly());
evalTessCommand.Add(new Argument<DirectoryInfo>("data-dir", "Path of directory containing the dataset").ExistingOnly());
evalTessCommand.Add(new Option<int>(
new string[] { "--skip", "-s" },
() => -1,
"Used to skip random images. For example, if rand-rate was 5 when generating the data, supply 5 here")
);
evalTessCommand.Handler = CommandHandler.Create(EvalTesseract);
var convertCommand = new Command("convert", "Converts a PGS subtitle file to SRT");
convertCommand.Add(new Argument<FileInfo>("pgs-path", "Path to PGS file").ExistingOnly());
convertCommand.Add(new Argument<FileInfo>("srt-path", "Path to save converted SRT file to").LegalFilePathsOnly());
convertCommand.Add(new Argument<string>("model-str", "The name of the trained model (bundled in the executable assembly)"));
convertCommand.Handler = CommandHandler.Create(ConvertPGS);
var rootCommand = new RootCommand("Command line tool for converting PGS subtitles to SRT subtitles using OCR")
{
pgsCommand,
codecCommand,
dataCommand,
lmCommand,
inferCommand,
evalModelCommand,
evalTessCommand,
convertCommand
};
rootCommand.Invoke(args);
}
static void ParsePGS(FileInfo path, DirectoryInfo outDir)
{
PGSReader pgsReader;
using (var stream = path.Open(FileMode.Open))
{
using (var reader = new EndiannessAwareBinaryReader(stream, System.Text.Encoding.UTF8,
false, EndiannessAwareBinaryReader.Endianness.Big))
{
pgsReader = new PGSReader(reader);
}
}
int frameCount = 0;
foreach (var frame in pgsReader.GetFrames())
{
int windowCount = 0;
foreach (var img in frame.Images)
{
img.Img.Save($"{outDir.FullName}/frame_{frameCount}_window_{windowCount}.png");
windowCount++;
}
frameCount++;
}
Console.WriteLine($"Done. Files written to {outDir}");
}
static void GenerateData(int size, DirectoryInfo outDir, FileInfo codecPath,
IEnumerable<FileInfo> lineData, int maxChars, int randRate, bool validation)
{
if (size <= 0)
{
throw new ArgumentException("Dataset size should be positive nonzero");
}
if (maxChars <= 0)
{
throw new ArgumentException("Image max characters should be positive nonzero");
}
if (randRate == 0)
{
throw new ArgumentException("Random rate should be nonzero");
}
if (!lineData.Any())
{
throw new ArgumentException("At least one line data path must be supplied");
}
var codec = new Codec(codecPath);
codec.Save(new FileInfo(outDir.FullName + "/codec.json"));
var data = new LabeledImageData(codec);
data.Generate(size, maxChars, randRate, validation, lineData, outDir);
Console.WriteLine($"Done. Data written to {outDir}");
}
static void GenerateCodec(FileInfo outPath, string letterCharacters, string digitCharacters,
string punctuationCharacters, string whitespaceCharacters)
{
/* Codec codec = new(
('A', 'Z', CodecCharacterType.Letter),
('a', 'z', CodecCharacterType.Letter),
('0', '9', CodecCharacterType.Digit),
(' ', ' ', CodecCharacterType.Whitespace),
(',', ',', CodecCharacterType.Punctuation),
('.', '.', CodecCharacterType.Punctuation),
('!', '!', CodecCharacterType.Punctuation),
('?', '?', CodecCharacterType.Punctuation),
('-', '-', CodecCharacterType.Punctuation),
('"', '"', CodecCharacterType.Punctuation),
('\'', '\'', CodecCharacterType.Punctuation),
('(', ')', CodecCharacterType.Punctuation),
(':', ';', CodecCharacterType.Punctuation)
); *
/*
Command to generate the above codec:
dotnet run -- generate-codec codecs/en.json $'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' $'0123456789' $',.!?-"\'():;' $' '
*/
var charList = new List<(char, char, CodecCharacterType)>();
foreach (char c in letterCharacters.ToCharArray())
{
charList.Add((c, c, CodecCharacterType.Letter));
}
foreach (char c in digitCharacters.ToCharArray())
{
charList.Add((c, c, CodecCharacterType.Digit));
}
foreach (char c in punctuationCharacters.ToCharArray())
{
charList.Add((c, c, CodecCharacterType.Punctuation));
}
foreach (char c in whitespaceCharacters.ToCharArray())
{
charList.Add((c, c, CodecCharacterType.Whitespace));
}
var codec = new Codec(charList.ToArray());
codec.Save(outPath);
Console.WriteLine($"Done. Codec written to {outPath}");
}
static void GenerateLanguageModel(FileInfo outPath, FileInfo codecPath, IEnumerable<FileInfo> lineData)
{
if (!lineData.Any())
{
throw new ArgumentException("At least one line data path must be supplied");
}
var codec = new Codec(codecPath);
var model = new LanguageModel(codec, lineData);
model.Save(outPath);
Console.WriteLine($"Done. Model written to {outPath}");
}
static void TestInference(FileInfo modelPath, FileInfo codecPath, IEnumerable<FileInfo> imagePaths, FileInfo languageModel)
{
if (!imagePaths.Any())
{
throw new ArgumentException("At least one image path must be supplied");
}
var codec = new Codec(codecPath);
var model = new InferenceModel(codec, modelPath);
var langModel = languageModel != null ? new LanguageModel(codec, languageModel) : null;
Console.WriteLine("Recognized text:");
var imagePathsArr = imagePaths.ToArray();
// Only do 64 at a time
for (int i = 0; i < imagePathsArr.Length; i += 64)
{
var end = Math.Min(i + 64, imagePathsArr.Length);
var imgPaths = imagePathsArr[i..end];
List<Image<A8>> images = new();
foreach (var path in imgPaths)
{
using (Image<A8> image = Image.Load<A8>(path.FullName))
{
var resized = image.Clone(ctx =>
ctx.Resize(0, 32)
);
images.Add(resized);
}
}
var strings = model.Infer(images, langModel);
foreach ((var path, var str) in imgPaths.Zip(strings))
{
Console.WriteLine($"{path} => {str}");
}
}
}
static void EvalModel(FileInfo modelPath, FileInfo codecPath, DirectoryInfo dataDir, FileInfo languageModel, int skip)
{
var codec = new Codec(codecPath);
var model = new InferenceModel(codec, modelPath);
var data = new LabeledImageData(codec, dataDir);
var langModel = languageModel != null ? new LanguageModel(codec, languageModel) : null;
// Do 64 at a time
var totalErrors = 0;
var totalCharacters = 0;
var count = -1;
foreach (var batch in data.GetBatchedData(64))
{
List<Image<A8>> images = new();
List<string> texts = new();
foreach ((var image, var text) in batch)
{
count++;
if (skip > 0 && count % (skip + 1) == skip)
{
continue;
}
images.Add(image);
texts.Add(text);
}
var strings = model.Infer(images, langModel);
foreach ((var text, var str) in texts.Zip(strings))
{
var dist = LevenshteinDistance.Distance(text, str);
totalErrors += dist;
totalCharacters += text.Length;
Console.WriteLine($"Levenshtein distance: {dist}, {text} => {str}");
}
}
double characterErrorRate = (double)totalErrors / totalCharacters;
Console.WriteLine($"Character error rate: {characterErrorRate}");
}
static void EvalTesseract(DirectoryInfo tessdataPath, string language, FileInfo codecPath, DirectoryInfo dataDir, int skip)
{
var model = new TesseractModel(tessdataPath, language);
var codec = new Codec(codecPath);
var data = new LabeledImageData(codec, dataDir);
var totalErrors = 0;
var totalCharacters = 0;
int count = -1;
foreach ((var image, var text) in data.GetData())
{
count++;
if (skip > 0 && count % (skip + 1) == skip)
{
continue;
}
// Zoom image out a bit (to give Tesseract a fair shot since it doesn't
// like tightly cropped images)
var newImage = new Image<Rgba32>(image.Width + 10, image.Height + 10);
newImage.Mutate(ctx =>
ctx.DrawImage(image, new Point(5, 5), 1.0f)
);
var str = model.Infer(newImage);
var dist = LevenshteinDistance.Distance(text, str);
totalErrors += dist;
totalCharacters += text.Length;
Console.WriteLine($"Levenshtein distance: {dist}, {text} => {str}");
}
double characterErrorRate = (double)totalErrors / totalCharacters;
Console.WriteLine($"Character error rate: {characterErrorRate}");
}
static void ConvertPGS(FileInfo pgsPath, FileInfo srtPath, string modelStr)
{
// Load model from executable assembly
var assembly = Assembly.GetExecutingAssembly();
var entryType = typeof(ProgramEntry);
var dataPrefix = "trained_models";
Codec codec;
InferenceModel model;
LanguageModel? langModel = null;
try
{
codec = new(assembly.GetManifestResourceStream(entryType, $"{dataPrefix}.{modelStr}.codec.json")
?? throw new FileNotFoundException($"Could not find codec for model {modelStr}"));
model = new(codec, assembly.GetManifestResourceStream(entryType, $"{dataPrefix}.{modelStr}.model.onnx")
?? throw new FileNotFoundException($"Could not find ONNX file for model {modelStr}"));
try
{
langModel = new(codec, assembly.GetManifestResourceStream(entryType, $"{dataPrefix}.{modelStr}.lm.json")
?? throw new FileNotFoundException($"Could not find language model for model {modelStr}"));
}
catch (FileNotFoundException ex)
{
// If language model doesn't exist, that's fine! Just print a warning.
Console.Error.WriteLine($"WARNING: Unable to read language model: {ex.Message}");
langModel = null;
}
}
catch (FileNotFoundException ex)
{
throw new ArgumentException("Error reading model from executable binary", ex);
}
PGSReader pgsReader;
using (var stream = pgsPath.Open(FileMode.Open))
{
using (var reader = new EndiannessAwareBinaryReader(stream, System.Text.Encoding.UTF8,
false, EndiannessAwareBinaryReader.Endianness.Big))
{
pgsReader = new PGSReader(reader);
}
}
// Convert file and display progress bar
SRT srt = new();
SRTFrame? lastFrame = null;
using (var bar = new ProgressBar(10000, "Converting PGS to SRT..."))
{
var progressReporter = bar.AsProgress<double>();
foreach ((var frame, var progress) in pgsReader.GetFramesWithProgress())
{
var text = new StringBuilder();
foreach (var img in frame.Images)
{
var binarized = ImageBinarizer.Binarize(img.Img, 0.5);
var lines = LineSegmenter.Segment(binarized);
// Ensure images are the proper height
foreach (var line in lines)
{
line.Mutate(ctx => ctx.Resize(0, 32));
}
var strings = model.Infer(lines, langModel);
foreach (var str in strings)
{
if (text.Length > 0)
{
text.Append('\n');
}
text.Append(str);
}
}
if (lastFrame != null && lastFrame.Text.Length > 0)
{
lastFrame.EndTimestamp = frame.Timestamp;
srt.AddFrame(lastFrame);
}
lastFrame = new SRTFrame(frame.Timestamp, text.ToString());
// Update progress bar
progressReporter.Report(progress);
}
progressReporter.Report(1.0);
}
srt.Write(srtPath);
}
}