-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathobject_track.py
135 lines (105 loc) · 4.33 KB
/
object_track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import cv2
import numpy as np
import pylab
import os
import shutil
import imageio
from collections import deque
from collections import deque
import numpy as np
import argparse
import imutils
import cv2
greenLower = (29, 86, 6)
greenUpper = (64, 255, 255)
# initialize the list of tracked points, the frame counter,
# and the coordinate deltas
pts = deque(maxlen=20)
counter = 0
(dX, dY) = (0, 0)
direction = ""
filename = 'test_sample1.avi'
vid = imageio.get_reader(filename, 'ffmpeg')
count = 0
for num in range(vid.get_length()):
try:
img = vid.get_data(num)
img = cv2.resize(img,(1000,600))
gray_image = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
_,im = cv2.threshold(gray_image,220,1,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
image, cnts, hier = cv2.findContours(im,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
center = None
for c in cnts:
x, y, w, h = cv2.boundingRect(c)
# draw a green rectangle to visualize the bounding rect
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
# get the min area rect
rect = cv2.minAreaRect(c)
box = cv2.boxPoints(rect)
# convert all coordinates floating point values to int
box = np.int0(box)
# draw a red 'nghien' rectangle
cv2.drawContours(img, [box], 0, (0, 0, 255))
# only proceed if at least one contour was found
if len(cnts) > 1:
# Change objects for finding trajectory
# By changing the value of -2 to any other integer you can change the tracking
# if you change it to -3 it will pickup the object which has third largest area
# and so on. but the area of objects will change as you move and rotate the image
# So it will not give much accurate results
# -2 works best because it is the second largest area. first largest area is usually
# the full video size.
c = sorted(cnts, key=cv2.contourArea)[-2]
# for tracking most dominant object uncomment this and comment above line
# c = [contour for contour in sorted(cnts, key=cv2.contourArea)[::-1] if cv2.contourArea(contour)< 450000][0]
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
cv2.circle(img, (int(x), int(y)), int(radius),
(0, 255, 255), 2)
cv2.circle(img, center, 5, (0, 0, 255), -1)
pts.appendleft(center)
def process_image(im):
image, contours, hierarchy= cv2.findContours(im, cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
# get the bounding rect
x, y, w, h = cv2.boundingRect(c)
# draw a green rectangle to visualize the bounding rect
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
#cv2.putText(img,'(x,y)',(x-25,y-10),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),2,cv2.LINE_AA)
# get the min area rect
rect = cv2.minAreaRect(c)
box = cv2.boxPoints(rect)
# convert all coordinates floating point values to int
box = np.int0(box)
# draw a red 'nghien' rectangle
cv2.drawContours(img, [box], 0, (0, 0, 255))
cv2.drawContours(img, contours, -1, (255, 255, 0), 1)
return img
try:
os.mkdir("images")
except:
shutil.rmtree("images")
os.mkdir("images")
try:
shutil.rmtree('output.avi')
except:
pass
filename = 'vtest.avi'
vid = imageio.get_reader(filename, 'ffmpeg')
for num in range(vid.get_length()):
img = vid.get_data(num)
gray_image = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
_,im = cv2.threshold(gray_image,220,1,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
im = process_image(im)
cv2.imshow('image',im)
#fourcc = cv2.VideoWriter_fourcc('M','J','P','G')
fourcc = cv2.VideoWriter_fourcc('F','M','P','4')
#w = int(vid.get(cv2.VID_PROP_FRAME_WIDTH))
#h = int(vid.get(cv2.VID_PROP_FRAME_HEIGHT))
#out = cv2.VideoWriter('output.avi',fourcc,20.0,(w,h))
out = cv2.VideoWriter('output.avi',-1,20.0,(640,480))
#vid.release()
pylab.imsave("images/"+"image-"+str(num)+".jpg",im)
os.system('ffmpeg -framerate 25 -i images/image-%00d.jpg -r 76 -s 800x600 output.avi')