11from clearml import Task
2- from clearml .automation import (
3- DiscreteParameterRange ,
4- GridSearch ,
5- HyperParameterOptimizer ,
6- )
2+ from clearml .automation import DiscreteParameterRange , HyperParameterOptimizer
3+ from clearml .automation .optuna import OptimizerOptuna
74from dotenv import load_dotenv
85
96load_dotenv ()
107
118
129def main ():
10+ task_training = Task .get_task (project_name = "MyProject" , task_name = "Training" )
11+
1312 Task .init (
1413 project_name = "MyProjectHPO" ,
1514 task_name = "Automatic Hyper-Parameter Optimization" ,
@@ -18,7 +17,7 @@ def main():
1817 )
1918
2019 optimizer = HyperParameterOptimizer (
21- base_task_id = Task . get_task ( project_name = "MyProject" , task_name = "Training" ) .id ,
20+ base_task_id = task_training .id ,
2221 hyper_parameters = [
2322 # DiscreteParameterRange("Hydra/model.n_factors", values=[8, 16]),
2423 # DiscreteParameterRange("Hydra/model.n_layers", values=[3, 4]),
@@ -35,10 +34,14 @@ def main():
3534 DiscreteParameterRange ("Hydra/trainer.max_epochs" , values = [100 ]),
3635 ],
3736 objective_metric_title = "val" ,
38- objective_metric_series = "ndcg " ,
37+ objective_metric_series = "auroc " ,
3938 objective_metric_sign = "max_global" ,
40- optimizer_class = GridSearch ,
39+ optimizer_class = OptimizerOptuna ,
4140 max_number_of_concurrent_tasks = 1 ,
41+ save_top_k_tasks_only = - 1 ,
42+ total_max_jobs = 10 ,
43+ min_iteration_per_job = 10 * 857 ,
44+ max_iteration_per_job = 50 * 857 ,
4245 # execution_queue="default",
4346 spawn_project = "MyProjectHPO" ,
4447 )
0 commit comments