We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Went through the workshop_tutorial.ipynb without changing anything, but am getting a ValueError.
This is the line initiating the error:
one_filter_dragonn = get_SequenceDNN(one_filter_dragonn_parameters)
ValueError Traceback (most recent call last) in () ----> 1 one_filter_dragonn = get_SequenceDNN(one_filter_dragonn_parameters) /Users/jeffrey/anaconda2/lib/python2.7/site-packages/dragonn/tutorial_utils.pyc in get_SequenceDNN(SequenceDNN_parameters) 80 81 def get_SequenceDNN(SequenceDNN_parameters): ---> 82 return SequenceDNN(**SequenceDNN_parameters) 83 84 /Users/jeffrey/anaconda2/lib/python2.7/site-packages/dragonn/models.pyc in init(self, seq_length, use_deep_CNN, use_RNN, num_tasks, num_filters, conv_width, num_filters_2, conv_width_2, num_filters_3, conv_width_3, pool_width, L1, dropout, GRU_size, TDD_size, verbose) 129 nb_filter=num_filters, nb_row=4, 130 nb_col=conv_width, activation='linear', --> 131 init='he_normal', input_shape=self.input_shape)) 132 self.model.add(Activation('relu')) 133 self.model.add(Dropout(dropout)) /Users/jeffrey/anaconda2/lib/python2.7/site-packages/Keras-0.3.2-py2.7.egg/keras/layers/convolutional.py in init(self, nb_filter, nb_row, nb_col, init, activation, weights, border_mode, subsample, dim_ordering, W_regularizer, b_regularizer, activity_regularizer, W_constraint, b_constraint, **kwargs) 253 self.initial_weights = weights 254 self.input = K.placeholder(ndim=4) --> 255 super(Convolution2D, self).init(**kwargs) 256 257 def build(self): /Users/jeffrey/anaconda2/lib/python2.7/site-packages/Keras-0.3.2-py2.7.egg/keras/layers/core.py in init(self, **kwargs) 49 self.set_input_shape(tuple(kwargs['batch_input_shape'])) 50 elif 'input_shape' in kwargs: ---> 51 self.set_input_shape((None,) + tuple(kwargs['input_shape'])) 52 self.trainable = True 53 if 'trainable' in kwargs: /Users/jeffrey/anaconda2/lib/python2.7/site-packages/Keras-0.3.2-py2.7.egg/keras/layers/core.py in set_input_shape(self, input_shape) 155 self._input_shape = input_shape 156 self.input = K.placeholder(shape=self._input_shape) --> 157 self.build() 158 159 @Property /Users/jeffrey/anaconda2/lib/python2.7/site-packages/Keras-0.3.2-py2.7.egg/keras/layers/convolutional.py in build(self) 264 else: 265 raise Exception('Invalid dim_ordering: ' + self.dim_ordering) --> 266 self.W = self.init(self.W_shape) 267 self.b = K.zeros((self.nb_filter,)) 268 self.trainable_weights = [self.W, self.b] /Users/jeffrey/anaconda2/lib/python2.7/site-packages/Keras-0.3.2-py2.7.egg/keras/initializations.py in he_normal(shape, name) 46 ''' Reference: He et al., http://arxiv.org/abs/1502.01852 47 ''' ---> 48 fan_in, fan_out = get_fans(shape) 49 s = np.sqrt(2. / fan_in) 50 return normal(shape, s, name=name) /Users/jeffrey/anaconda2/lib/python2.7/site-packages/Keras-0.3.2-py2.7.egg/keras/initializations.py in get_fans(shape) 5 6 def get_fans(shape): ----> 7 fan_in = shape[0] if len(shape) == 2 else np.prod(shape[1:]) 8 fan_out = shape[1] if len(shape) == 2 else shape[0] 9 return fan_in, fan_out /Users/jeffrey/anaconda2/lib/python2.7/site-packages/numpy/core/fromnumeric.pyc in prod(a, axis, dtype, out, keepdims) 2564 2565 return _methods._prod(a, axis=axis, dtype=dtype, -> 2566 out=out, **kwargs) 2567 2568 /Users/jeffrey/anaconda2/lib/python2.7/site-packages/numpy/core/_methods.pyc in _prod(a, axis, dtype, out, keepdims) 33 34 def _prod(a, axis=None, dtype=None, out=None, keepdims=False): ---> 35 return umr_prod(a, axis, dtype, out, keepdims) 36 37 def _any(a, axis=None, dtype=None, out=None, keepdims=False): ValueError: setting an array element with a sequence.
ValueError Traceback (most recent call last) in () ----> 1 one_filter_dragonn = get_SequenceDNN(one_filter_dragonn_parameters)
/Users/jeffrey/anaconda2/lib/python2.7/site-packages/dragonn/tutorial_utils.pyc in get_SequenceDNN(SequenceDNN_parameters) 80 81 def get_SequenceDNN(SequenceDNN_parameters): ---> 82 return SequenceDNN(**SequenceDNN_parameters) 83 84
/Users/jeffrey/anaconda2/lib/python2.7/site-packages/dragonn/models.pyc in init(self, seq_length, use_deep_CNN, use_RNN, num_tasks, num_filters, conv_width, num_filters_2, conv_width_2, num_filters_3, conv_width_3, pool_width, L1, dropout, GRU_size, TDD_size, verbose) 129 nb_filter=num_filters, nb_row=4, 130 nb_col=conv_width, activation='linear', --> 131 init='he_normal', input_shape=self.input_shape)) 132 self.model.add(Activation('relu')) 133 self.model.add(Dropout(dropout))
/Users/jeffrey/anaconda2/lib/python2.7/site-packages/Keras-0.3.2-py2.7.egg/keras/layers/convolutional.py in init(self, nb_filter, nb_row, nb_col, init, activation, weights, border_mode, subsample, dim_ordering, W_regularizer, b_regularizer, activity_regularizer, W_constraint, b_constraint, **kwargs) 253 self.initial_weights = weights 254 self.input = K.placeholder(ndim=4) --> 255 super(Convolution2D, self).init(**kwargs) 256 257 def build(self):
/Users/jeffrey/anaconda2/lib/python2.7/site-packages/Keras-0.3.2-py2.7.egg/keras/layers/core.py in init(self, **kwargs) 49 self.set_input_shape(tuple(kwargs['batch_input_shape'])) 50 elif 'input_shape' in kwargs: ---> 51 self.set_input_shape((None,) + tuple(kwargs['input_shape'])) 52 self.trainable = True 53 if 'trainable' in kwargs:
/Users/jeffrey/anaconda2/lib/python2.7/site-packages/Keras-0.3.2-py2.7.egg/keras/layers/core.py in set_input_shape(self, input_shape) 155 self._input_shape = input_shape 156 self.input = K.placeholder(shape=self._input_shape) --> 157 self.build() 158 159 @Property
/Users/jeffrey/anaconda2/lib/python2.7/site-packages/Keras-0.3.2-py2.7.egg/keras/layers/convolutional.py in build(self) 264 else: 265 raise Exception('Invalid dim_ordering: ' + self.dim_ordering) --> 266 self.W = self.init(self.W_shape) 267 self.b = K.zeros((self.nb_filter,)) 268 self.trainable_weights = [self.W, self.b]
/Users/jeffrey/anaconda2/lib/python2.7/site-packages/Keras-0.3.2-py2.7.egg/keras/initializations.py in he_normal(shape, name) 46 ''' Reference: He et al., http://arxiv.org/abs/1502.01852 47 ''' ---> 48 fan_in, fan_out = get_fans(shape) 49 s = np.sqrt(2. / fan_in) 50 return normal(shape, s, name=name)
/Users/jeffrey/anaconda2/lib/python2.7/site-packages/Keras-0.3.2-py2.7.egg/keras/initializations.py in get_fans(shape) 5 6 def get_fans(shape): ----> 7 fan_in = shape[0] if len(shape) == 2 else np.prod(shape[1:]) 8 fan_out = shape[1] if len(shape) == 2 else shape[0] 9 return fan_in, fan_out
/Users/jeffrey/anaconda2/lib/python2.7/site-packages/numpy/core/fromnumeric.pyc in prod(a, axis, dtype, out, keepdims) 2564 2565 return _methods._prod(a, axis=axis, dtype=dtype, -> 2566 out=out, **kwargs) 2567 2568
/Users/jeffrey/anaconda2/lib/python2.7/site-packages/numpy/core/_methods.pyc in _prod(a, axis, dtype, out, keepdims) 33 34 def _prod(a, axis=None, dtype=None, out=None, keepdims=False): ---> 35 return umr_prod(a, axis, dtype, out, keepdims) 36 37 def _any(a, axis=None, dtype=None, out=None, keepdims=False):
ValueError: setting an array element with a sequence.
Any help would be appreciated. Thanks
The text was updated successfully, but these errors were encountered:
I got the same issue. Any suggestion?
Thanks in advance!
Sorry, something went wrong.
No branches or pull requests
Went through the workshop_tutorial.ipynb without changing anything, but am getting a ValueError.
This is the line initiating the error:
one_filter_dragonn = get_SequenceDNN(one_filter_dragonn_parameters)
Any help would be appreciated.
Thanks
The text was updated successfully, but these errors were encountered: