-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript.py
243 lines (233 loc) · 10.1 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
import re
import requests
import time
import xml.etree.ElementTree as ET
import yake
from modules.logging_colors import logger
params = {
"arxiv_url": "http://export.arxiv.org/api/",
"ncbi_url": "https://eutils.ncbi.nlm.nih.gov/entrez/eutils",
"replace_botwords": True,
"search_arxiv": False,
"search_pubmed": True,
"tagger_active": False,
"tagger_url": "https://tagger.jensenlab.org/",
"yake_active": False,
"yake_limit": 10,
"yake_score": 0.05
}
def add_context(articles, state):
"""
Creates LLM context from a set of references.
"""
for article in articles:
if "id" in article and "title" in article:
state["context"] += "\n\n"+article["id"]+"\ntitle: "+article["title"]
if "abstract" in article:
state["context"] += "\nabstract: "+article["abstract"]
def retrieve_arxiv(refs):
"""
Retrieves titles and abstracts for a list of arXiv identifiers.
"""
postdata = {
"id_list": ",".join(set(refs))
}
xmlstring = requests.post(params["arxiv_url"]+"/query", data=postdata).text
articles = []
root = ET.fromstring(xmlstring)
for node in root:
if node.tag == "{http://www.w3.org/2005/Atom}entry":
article = {}
for node in node:
if node.tag == "{http://www.w3.org/2005/Atom}id":
article["id"] = re.sub(r".*?([0-9][0-9][0-9][0-9]\.[0-9]+)(v[0-9]+)?", r"arXiv:\1", node.text)
elif node.tag == "{http://www.w3.org/2005/Atom}title":
article["title"] = node.text
elif node.tag == "{http://www.w3.org/2005/Atom}summary":
article["abstract"] = node.text
articles.append(article)
return articles
def retrieve_pubmed(refs):
"""
Retrieves titles and abstracts for a list of PubMed identifiers.
"""
postdata = {
"db": "pubmed",
"id": ",".join(set(refs))
}
xmlstring = requests.post(params["ncbi_url"]+"/efetch.fcgi", data=postdata).text
articles = []
root = ET.fromstring(xmlstring)
for node in root:
if node.tag == "PubmedArticle":
article = {}
for node in node:
if node.tag == "MedlineCitation":
for node in node:
if node.tag == "PMID":
article["id"] = "PMID:"+node.text
elif node.tag == "Article":
for node in node:
if node.tag == "ArticleTitle" and node.text is not None:
article["title"] = node.text
if node.tag == "Abstract":
for node in node:
if node.tag == "AbstractText" and node.text is not None:
article["abstract"] = node.text
articles.append(article)
return articles
def search_arxiv(terms):
"""
Search arXiv for a list of terms.
"""
terms = ['"'+term+'"' for term in terms]
if (len(terms) > 1):
terms = list(set([i+" "+j for i,j in zip(terms, terms[1:])]))+list(set(terms))
refs = set()
for term in terms:
postdata = {
"max_results": 5,
"search_query": term,
"sortBy": "relevance"
}
xmlstring = requests.post(params["arxiv_url"]+"/query", data=postdata).text
root = ET.fromstring(xmlstring)
for node in root:
if node.tag == "{http://www.w3.org/2005/Atom}entry":
for node in node:
if node.tag == "{http://www.w3.org/2005/Atom}id":
refs.add(re.sub(r".*?([0-9][0-9][0-9][0-9]\.[0-9]+)(v[0-9]+)?", r"\1", node.text))
if len(refs) >= 20:
break
time.sleep(1.0)
return refs
def search_pubmed(terms):
"""
Search Pubmed for a list of terms.
"""
if (len(terms) > 1):
terms = list(set([i+" AND "+j for i,j in zip(terms, terms[1:])]))+list(set(terms))
refs = set()
for term in terms:
postdata = {
"db": "pubmed",
"retmax": 5,
"sort": "relevance",
"term": term
}
xmlstring = requests.post(params["ncbi_url"]+"/esearch.fcgi", data=postdata).text
root = ET.fromstring(xmlstring)
for node in root:
if node.tag == "IdList":
for node in node:
if node.tag == "Id":
refs.add(node.text)
if len(refs) >= 20:
break
time.sleep(1.0)
return refs
def ui():
"""
Gets executed when the UI is drawn. Custom gradio elements and
their corresponding event handlers should be defined here.
"""
with gr.Accordion("Seshat", open=True):
with gr.Row():
replace_botwords = gr.Checkbox(label="Replace bot words", value=params["replace_botwords"])
search_arxiv = gr.Checkbox(label="Search arXiv", value=params["search_arxiv"])
search_pubmed = gr.Checkbox(label="Search PubMed", value=params["search_pubmed"])
tagger_active = gr.Checkbox(label="Automatic entity names", value=params["tagger_active"])
with gr.Row():
yake_active = gr.Checkbox(label="Automatic keywords", value=params["yake_active"])
yake_limit = gr.Slider(0, 20, step=1, label="Maximum keywords", value=params["yake_limit"])
yake_score = gr.Slider(0.00, 0.20, step=0.01, label="Maximum score", value=params["yake_score"])
replace_botwords.change(lambda x: params.update({"replace_botwords": x}), replace_botwords, None)
search_arxiv.change(lambda x: params.update({"search_arxiv": x}), search_arxiv, None)
search_pubmed.change(lambda x: params.update({"search_pubmed": x}), search_pubmed, None)
tagger_active.change(lambda x: params.update({"tagger_active": x}), tagger_active, None)
yake_active.change(lambda x: params.update({"yake_active": x}), yake_active, None)
yake_limit.change(lambda x: params.update({"yake_limit": x}), yake_limit, None)
yake_score.change(lambda x: params.update({"yake_score": x}), yake_score, None)
def input_modifier(string, state, is_chat=False):
"""
Modifies the user input before it is sent to the LLM.
"""
articles = []
arxiv_re = r"arxiv:? ?([0-9][0-9][0-9][0-9]\.[0-9]+)"
arxiv_refs = re.findall(arxiv_re, string, flags = re.IGNORECASE)
if arxiv_refs:
logger.info("Seshat arXiv references: "+", ".join(arxiv_refs))
articles += retrieve_arxiv(arxiv_refs)
doi_re = r"doi: ?(10\.[0-9]+/[a-z0-9._;()/-]+)"
doi_refs = re.findall(doi_re, string, flags = re.IGNORECASE)
if doi_refs:
logger.info("Seshat DOI references: "+", ".join(doi_refs))
pubmed_re = r"pmid:? ?0*([0-9]+)"
pubmed_refs = re.findall(pubmed_re, string, flags = re.IGNORECASE)
if pubmed_refs:
logger.info("Seshat PubMed references: "+", ".join(pubmed_refs))
articles += retrieve_pubmed(pubmed_refs)
if articles:
state["context"] += "\n\nAll following references should be cited."
add_context(articles, state)
articles = []
search_re = r"\{(.+?)\}"
search_terms = re.findall(search_re, string)
if params["tagger_active"]:
postdata = {
"document": string,
"entity_types": "9606 -1 -2 -22 -25 -26",
"format": "tsv"
}
tsvstring = requests.post(params["tagger_url"]+"/GetEntities", data=postdata).text
if len(tsvstring) > 0:
for entity in tsvstring.split("\n"):
(entity_name, entity_type, entity_id) = entity.split("\t")
if entity_name not in search_terms:
search_terms.append(entity_name)
if params["yake_active"]:
yake_keyword_extractor = yake.KeywordExtractor(lan="en", n=3, dedupLim=0.9, top=params["yake_limit"], features=None)
yake_keywords = [keyword[0] for keyword in yake_keyword_extractor.extract_keywords(string) if keyword[1]<=params["yake_score"]]
if not yake_keywords:
logger.warn("Seshat found no keywords with Yake.")
for yake_keyword in yake_keywords:
if yake_keyword not in search_terms:
search_terms.append(yake_keyword)
logger.info("Seshat search terms: "+", ".join(search_terms))
if params["search_arxiv"]:
arxiv_refs = search_arxiv(search_terms)
if arxiv_refs:
logger.info("Seshat arXiv search results:"+", ".join(arxiv_refs))
articles += retrieve_arxiv(arxiv_refs)
if params["search_pubmed"]:
pubmed_refs = search_pubmed(search_terms)
if pubmed_refs:
logger.info("Seshat PubMed search results:"+", ".join(pubmed_refs))
articles += retrieve_pubmed(pubmed_refs)
if articles:
state["context"] += "\n\nSome of the references below should be cited."
add_context(articles, state)
string = re.sub(search_re, r"\1", string)
return string
def output_modifier(string, state, is_chat=False):
"""
Modifies the LLM output before it is sent to the user.
"""
string = re.sub(r"arXiv: ?", "arXiv:", string, flags = re.IGNORECASE)
string = re.sub(r"(PMID|PubMed ?ID): ?", "PMID:", string, flags = re.IGNORECASE)
if params["replace_botwords"]:
string = re.sub(r"amalgamat", "combine", string)
string = re.sub(r"burgeoning ", "broad ", string)
string = re.sub(r"delve into ", "explore ", string)
string = re.sub(r"dive into", "explore ", string)
string = re.sub(r"In order to ", "To ", string)
string = re.sub(r"in order to ", "to ", string)
string = re.sub(r"intricate ", "complex ", string)
string = re.sub(r"meticulous ", "precise ", string)
string = re.sub(r"meticulously ", "carefully ", string)
string = re.sub(r"pivotal ", "central ", string)
string = re.sub(r"tapestry of ", "mixture of ", string)
string = re.sub(r"the realm of ", "", string)
string = re.sub(r"utili[sz]e", "use ", string)
return string