|
| 1 | +#!/usr/bin/env python |
| 2 | + |
| 3 | +import InstrumentDriver |
| 4 | +from VISA_Driver import VISA_Driver |
| 5 | +from InstrumentConfig import InstrumentQuantity |
| 6 | +import numpy as np |
| 7 | + |
| 8 | +class Error(Exception): |
| 9 | + pass |
| 10 | + |
| 11 | +class Driver(VISA_Driver): |
| 12 | + """ This class implements the Keysight N90xx instrument driver""" |
| 13 | + |
| 14 | + def performSetValue(self, quant, value, sweepRate=0.0, options={}): |
| 15 | + """Perform the Set Value instrument operation. This function should return the actual value set by the instrument""" |
| 16 | + if quant.name in ('Range type',): |
| 17 | + if quant.getValueString(value) == 'Zero-span mode': |
| 18 | + # set span to zero |
| 19 | + self.sendValueToOther('Span', 0.0) |
| 20 | + self.sendValueToOther('# of points', 2.0) |
| 21 | + #sweep time should be set to a small value (for example, 10 ms) |
| 22 | + self.writeAndLog(':SWE:TIME 1E-3;') |
| 23 | + else: |
| 24 | + # set lowest possible span to get out of zero-span mode |
| 25 | + if self.getValue('Span') < 10: |
| 26 | + self.sendValueToOther('Span', 1000000) |
| 27 | + if self.getValue('# of points') == 2: |
| 28 | + self.sendValueToOther('# of points', 1001) |
| 29 | + # sweep time should be set to auto |
| 30 | + self.writeAndLog(':SWE:TIME:AUTO 1;') |
| 31 | + elif quant.name in ('Wait for new trace',): |
| 32 | + # turn on continous acquisition if not waiting |
| 33 | + if value == False: |
| 34 | + self.writeAndLog(':INIT:CONT ON;') |
| 35 | + elif quant.name in ('Trace type CS', 'Trace type CW', 'Measurement Type'): |
| 36 | + pass |
| 37 | + else: |
| 38 | + # run standard VISA case |
| 39 | + value = VISA_Driver.performSetValue(self, quant, value, sweepRate, options) |
| 40 | + return value |
| 41 | + |
| 42 | + |
| 43 | + def performGetValue(self, quant, options={}): |
| 44 | + """Perform the Get Value instrument operation""" |
| 45 | + # check type of quantity |
| 46 | + #if quant.name in ('Zero-span mode',): |
| 47 | + if quant.name in ('Range type',): |
| 48 | + # check if span is zero |
| 49 | + span = self.readValueFromOther('Span') |
| 50 | + if span == 0: |
| 51 | + value = 'Zero-span mode' |
| 52 | + else: |
| 53 | + # return old value if not in zero span |
| 54 | + value = quant.getValueString() |
| 55 | + if value == 'Zero-span mode': |
| 56 | + value = 'Center - Span' |
| 57 | + elif quant.name in ('Signal', 'Signal - Zero span'): |
| 58 | + # if not in continous mode, trig from computer |
| 59 | + bWaitTrace = self.getValue('Wait for new trace') |
| 60 | + bAverage = self.getValue('Average') |
| 61 | + # wait for trace, either in averaging or normal mode |
| 62 | + if bAverage: |
| 63 | + # clear averages |
| 64 | + self.writeAndLog(':SENS:AVER:CLE;') |
| 65 | + self.writeAndLog(':ABOR;:INIT:CONT OFF;:INIT:IMM;*OPC') |
| 66 | + # wait some time before first check |
| 67 | + self.thread().msleep(30) |
| 68 | + bDone = False |
| 69 | + while (not bDone) and (not self.isStopped()): |
| 70 | + # check if done |
| 71 | + stb = int(self.askAndLog('*ESR?')) |
| 72 | + bDone = (stb & 1) > 0 |
| 73 | + if not bDone: |
| 74 | + self.thread().msleep(50) |
| 75 | + # if stopped, don't get data |
| 76 | + if self.isStopped(): |
| 77 | + self.writeAndLog('*CLS;:INIT:CONT ON;') |
| 78 | + return [] |
| 79 | + # get data as float32, convert to numpy array |
| 80 | + self.write(':FORM REAL,32;TRAC:DATA? TRACE1', bCheckError=False) |
| 81 | + sData = self.read(ignore_termination=True) |
| 82 | + if bWaitTrace and not bAverage: |
| 83 | + self.writeAndLog(':INIT:CONT ON;') |
| 84 | + # strip header to find # of points |
| 85 | + i0 = sData.find('#') |
| 86 | + nDig = int(sData[i0+1]) |
| 87 | + nByte = int(sData[i0+2:i0+2+nDig]) |
| 88 | + nPts = nByte/4 |
| 89 | + # get data to numpy array |
| 90 | + vData = np.frombuffer(sData[(i0+2+nDig):(i0+2+nDig+nByte)], |
| 91 | + dtype='>f', count=nPts) |
| 92 | + # get start/stop frequencies |
| 93 | + startFreq = self.readValueFromOther('Start frequency') |
| 94 | + stopFreq = self.readValueFromOther('Stop frequency') |
| 95 | + # sweepType = self.readValueFromOther('Sweep type') |
| 96 | + # # if log scale, take log of start/stop frequencies |
| 97 | + # if sweepType == 'Log': |
| 98 | + # startFreq = np.log10(startFreq) |
| 99 | + # stopFreq = np.log10(stopFreq) |
| 100 | + # check if return trace or trace average |
| 101 | + if quant.name == 'Signal - Zero span': |
| 102 | + # return average |
| 103 | + value = np.average(vData) |
| 104 | + else: |
| 105 | + # create a trace dict |
| 106 | + value = InstrumentQuantity.getTraceDict(vData, t0=startFreq, |
| 107 | + dt=(stopFreq-startFreq)/(nPts-1)) |
| 108 | + elif quant.name in ('Signal - CW'): |
| 109 | + # if not in continous mode, trig from computer |
| 110 | + bWaitTrace = self.getValue('Wait for new trace') |
| 111 | + bAverage = self.getValue('Average CW') |
| 112 | + # wait for trace, either in averaging or normal mode |
| 113 | + if bAverage: |
| 114 | + # clear averages |
| 115 | + self.writeAndLog(':WAV:AVER:CLE;') |
| 116 | + self.writeAndLog(':ABOR;:INIT:CONT OFF;:INIT:IMM;*OPC') |
| 117 | + # wait some time before first check |
| 118 | + self.thread().msleep(30) |
| 119 | + bDone = False |
| 120 | + while (not bDone) and (not self.isStopped()): |
| 121 | + # check if done |
| 122 | + stb = int(self.askAndLog('*ESR?')) |
| 123 | + bDone = (stb & 1) > 0 |
| 124 | + if not bDone: |
| 125 | + self.thread().msleep(50) |
| 126 | + # if stopped, don't get data |
| 127 | + if self.isStopped(): |
| 128 | + self.writeAndLog('*CLS;:INIT:CONT ON;') |
| 129 | + return [] |
| 130 | + # get data as float32, convert to numpy array |
| 131 | + sTraceNum = self.getTraceDict(quant) |
| 132 | + sWrite = ':FORM REAL,32;READ:WAV'+sTraceNum+'?' |
| 133 | + self.write(sWrite, bCheckError=False) |
| 134 | + sData = self.read(ignore_termination=True) |
| 135 | + if bWaitTrace and not bAverage: |
| 136 | + self.writeAndLog(':INIT:CONT ON;') |
| 137 | + # strip header to find # of points |
| 138 | + i0 = sData.find('#') |
| 139 | + nDig = int(sData[i0+1]) |
| 140 | + nByte = int(sData[i0+2:i0+2+nDig]) |
| 141 | + nPts = nByte/4 |
| 142 | + # get data to numpy array |
| 143 | + vData = np.frombuffer(sData[(i0+2+nDig):(i0+2+nDig+nByte)], |
| 144 | + dtype='>f', count=nPts) |
| 145 | + # get start/stop frequencies |
| 146 | + #duration = self.readValueFromOther('Measurement Time IQ') |
| 147 | + sampleFreq = self.readValueFromOther('Sample Rate CW') |
| 148 | + # sweepType = self.readValueFromOther('Sweep type') |
| 149 | + # # if log scale, take log of start/stop frequencies |
| 150 | + # if sweepType == 'Log': |
| 151 | + # startFreq = np.log10(startFreq) |
| 152 | + # stopFreq = np.log10(stopFreq) |
| 153 | + # check if return trace or trace average |
| 154 | + # create a trace dict |
| 155 | + if self.getValue('Trace type CW') == 'unprocessed IQ trace data (V)': |
| 156 | + #the trace is complex. I values are even indices while Q values are odd indices. |
| 157 | + realData = vData[0:nPts:2] |
| 158 | + imagData = vData[1:nPts:2] |
| 159 | + cData = realData +1j*imagData |
| 160 | + samplePeriod = (2/sampleFreq) |
| 161 | + else: |
| 162 | + #the trace is a simple vector. |
| 163 | + cData = vData +1j*np.zeros(vData.shape) |
| 164 | + samplePeriod = (1/sampleFreq) |
| 165 | + |
| 166 | + value = InstrumentQuantity.getTraceDict(cData, t0=0.0, dt=samplePeriod) |
| 167 | + |
| 168 | + elif quant.name in ('Signal - CS'): |
| 169 | + # if not in continous mode, trig from computer |
| 170 | + bWaitTrace = self.getValue('Wait for new trace') |
| 171 | + bAverage = self.getValue('Average CS') |
| 172 | + # wait for trace, either in averaging or normal mode |
| 173 | + if bAverage: |
| 174 | + # clear averages |
| 175 | + self.writeAndLog(':SPEC:AVER:CLE;') |
| 176 | + self.writeAndLog(':ABOR;:INIT:CONT OFF;:INIT:IMM;*OPC') |
| 177 | + # wait some time before first check |
| 178 | + self.thread().msleep(30) |
| 179 | + bDone = False |
| 180 | + while (not bDone) and (not self.isStopped()): |
| 181 | + # check if done |
| 182 | + stb = int(self.askAndLog('*ESR?')) |
| 183 | + bDone = (stb & 1) > 0 |
| 184 | + if not bDone: |
| 185 | + self.thread().msleep(50) |
| 186 | + # if stopped, don't get data |
| 187 | + if self.isStopped(): |
| 188 | + self.writeAndLog('*CLS;:INIT:CONT ON;') |
| 189 | + return [] |
| 190 | + # get data as float32, convert to numpy array |
| 191 | + sTraceNum = self.getTraceDict(quant) |
| 192 | + sWrite = ':FORM REAL,32;READ:SPEC'+sTraceNum+'?' |
| 193 | + self.write(sWrite, bCheckError=False) |
| 194 | + sData = self.read(ignore_termination=True) |
| 195 | + if bWaitTrace and not bAverage: |
| 196 | + self.writeAndLog(':INIT:CONT ON;') |
| 197 | + # strip header to find # of points |
| 198 | + i0 = sData.find('#') |
| 199 | + nDig = int(sData[i0+1]) |
| 200 | + nByte = int(sData[i0+2:i0+2+nDig]) |
| 201 | + nPts = nByte/4 |
| 202 | + # get data to numpy array |
| 203 | + vData = np.frombuffer(sData[(i0+2+nDig):(i0+2+nDig+nByte)], |
| 204 | + dtype='>f', count=nPts) |
| 205 | + # get start/stop frequencies |
| 206 | + #duration = self.readValueFromOther('Measurement Time IQ') |
| 207 | + centerFreq = self.getValue('Center frequency CS') |
| 208 | + span = self.getValue('Span CS') |
| 209 | + startFreq = centerFreq - span/2 |
| 210 | + stopFreq = centerFreq + span/2 |
| 211 | + # sweepType = self.readValueFromOther('Sweep type') |
| 212 | + # # if log scale, take log of start/stop frequencies |
| 213 | + # if sweepType == 'Log': |
| 214 | + # startFreq = np.log10(startFreq) |
| 215 | + # stopFreq = np.log10(stopFreq) |
| 216 | + # check if return trace or trace average |
| 217 | + # create a trace dict |
| 218 | + if self.getValue('Trace type CS') in ('unprocessed IQ trace data (V)', 'processed I/Q trace vs. time'): |
| 219 | + #the trace is complex. I values are even indices while Q values are odd indices. |
| 220 | + realData = vData[0:nPts:2] |
| 221 | + imagData = vData[1:nPts:2] |
| 222 | + cData = realData +1j*imagData |
| 223 | + nPts_new = nPts/2 |
| 224 | + else: |
| 225 | + #the trace is a simple vector. |
| 226 | + cData = vData +1j*np.zeros(vData.shape) |
| 227 | + nPts_new = nPts |
| 228 | + |
| 229 | + if self.getValue('Trace type CS') in ('log-mag vs. Freq.', 'avged log-mag vs. Freq.', 'phase of FFT vs. Freq.', 'linear spectrum (V RMS)', 'avged linear spectrum (V RMS)'): |
| 230 | + startValue=startFreq |
| 231 | + delta=(stopFreq-startFreq)/(nPts_new-1) |
| 232 | + else: |
| 233 | + startValue=0 |
| 234 | + delta = 1 |
| 235 | + |
| 236 | + |
| 237 | + value = InstrumentQuantity.getTraceDict(cData, t0=startValue, |
| 238 | + dt=delta) |
| 239 | + |
| 240 | + elif quant.name in ('Wait for new trace',): |
| 241 | + # do nothing, return local value |
| 242 | + value = quant.getValue() |
| 243 | + elif quant.name in ('Trace type CS', 'Trace type CW', 'Measurement Type'): |
| 244 | + value = self.getValue(quant.name) |
| 245 | + else: |
| 246 | + # for all other cases, call VISA driver |
| 247 | + value = VISA_Driver.performGetValue(self, quant, options) |
| 248 | + return value |
| 249 | + |
| 250 | + def getTraceDict(self, quant): |
| 251 | + if quant.name in ('Signal - CS'): |
| 252 | + traceDict = {'unprocessed IQ trace data (V)': '0', |
| 253 | + 'log-mag vs. time': '2', |
| 254 | + 'processed I/Q trace vs. time': '3', |
| 255 | + 'log-mag vs. Freq.': '4', |
| 256 | + 'avged log-mag vs. Time': '5', |
| 257 | + 'avged log-mag vs. Freq.': '7', |
| 258 | + 'shape of FFT window': '9', |
| 259 | + 'phase of FFT vs. Freq.': '10', |
| 260 | + 'linear spectrum (V RMS)': '11', |
| 261 | + 'avged linear spectrum (V RMS)': '12' |
| 262 | + } |
| 263 | + sTraceType = self.getValue('Trace type CS') |
| 264 | + elif quant.name in ('Signal - CW'): |
| 265 | + traceDict = {'unprocessed IQ trace data (V)': '0', |
| 266 | + 'log-mag vs. time': '2', |
| 267 | + } |
| 268 | + sTraceType = self.getValue('Trace type CW') |
| 269 | + return traceDict[sTraceType] |
| 270 | + |
| 271 | + |
| 272 | + |
| 273 | +if __name__ == '__main__': |
| 274 | + pass |
0 commit comments