Skip to content

Commit

Permalink
those are useless
Browse files Browse the repository at this point in the history
  • Loading branch information
riccardobrasca committed Oct 25, 2024
1 parent df804cb commit 54cef9c
Show file tree
Hide file tree
Showing 3 changed files with 0 additions and 59 deletions.
13 changes: 0 additions & 13 deletions FltRegular/NumberTheory/GaloisPrime.lean
Original file line number Diff line number Diff line change
Expand Up @@ -50,11 +50,6 @@ lemma primesOver_bot [Nontrivial R] [IsDomain S] [NoZeroSMulDivisors R S]

variable (S)

lemma primesOverFinset_bot [IsDedekindDomain S] : primesOverFinset S (⊥ : Ideal R) = ∅ := by
classical
rw [primesOverFinset, Ideal.map_bot, ← Ideal.zero_eq_bot, factors_zero]
rfl

lemma coe_primesOverFinset [Ring.DimensionLEOne R] [IsDedekindDomain S]
[NoZeroSMulDivisors R S] (p : Ideal R) (hp : p ≠ ⊥) [hp' : p.IsPrime] :
primesOverFinset S p = primesOver S p := by
Expand Down Expand Up @@ -82,14 +77,6 @@ lemma primesOver_finite [Ring.DimensionLEOne R] [IsDedekindDomain S] [NoZeroSMul
· rw [primesOver_eq_empty_of_not_isPrime S p h]
exact Set.finite_empty

lemma primesOver_nonempty [IsDomain S] [NoZeroSMulDivisors R S] [Algebra.IsIntegral R S]
(p : Ideal R) [p.IsPrime] : (primesOver S p).Nonempty := by
have := Ideal.bot_prime (α := S)
obtain ⟨Q, _, hQ⟩ := Ideal.exists_ideal_over_prime_of_isIntegral p ⊥
(by rw [Ideal.comap_bot_of_injective _
(NoZeroSMulDivisors.algebraMap_injective R S)]; exact bot_le)
exact ⟨Q, hQ⟩

variable {S}

lemma ne_bot_of_mem_primesOver [IsDedekindDomain S] [NoZeroSMulDivisors R S] {p : Ideal R}
Expand Down
9 changes: 0 additions & 9 deletions FltRegular/NumberTheory/Hilbert92.lean
Original file line number Diff line number Diff line change
Expand Up @@ -53,15 +53,6 @@ lemma systemOfUnits.IsFundamental.maximal' [Module A G] (S : systemOfUnits p G r
letI := hs.choose
convert hs.choose_spec a ‹_› <;> symm <;> exact Nat.card_eq_fintype_card.symm

@[to_additive]
theorem Finsupp.prod_congr' {α M N} [Zero M] [CommMonoid N] {f₁ f₂ : α →₀ M} {g1 g2 : α → M → N}
(h : ∀ x, g1 x (f₁ x) = g2 x (f₂ x)) (hg1 : ∀ i, g1 i 0 = 1) (hg2 : ∀ i, g2 i 0 = 1) :
f₁.prod g1 = f₂.prod g2 := by
classical
rw [f₁.prod_of_support_subset Finset.subset_union_left _ (fun i _ ↦ hg1 i),
f₂.prod_of_support_subset Finset.subset_union_right _ (fun i _ ↦ hg2 i)]
exact Finset.prod_congr rfl (fun x _ ↦ h x)

@[simps]
noncomputable
def Finsupp.ltotal (α M R) [CommSemiring R] [AddCommMonoid M] [Module R M] :
Expand Down
37 changes: 0 additions & 37 deletions FltRegular/NumberTheory/Unramified.lean
Original file line number Diff line number Diff line change
Expand Up @@ -120,47 +120,10 @@ lemma comap_map_eq_of_isUnramified [IsGalois K L] [IsUnramified R S] (I : Ideal
Ideal.mem_normalizedFactors_iff hIbot']
exact ⟨hP.1.comap _, Ideal.comap_mono hP.2

open scoped Classical in
lemma isUnramifiedAt_iff_normalizedFactors_nodup [NoZeroSMulDivisors R S] [IsDedekindDomain S]
(p : Ideal R) [p.IsPrime] (hp : p ≠ ⊥) :
IsUnramifiedAt S p ↔ (normalizedFactors (p.map (algebraMap R S))).Nodup := by
simp_rw [Multiset.nodup_iff_count_eq_one, ← Multiset.mem_toFinset,
← factors_eq_normalizedFactors]
show _ ↔ ∀ P ∈ (primesOverFinset S p : Set (Ideal S)), _
simp_rw [IsUnramifiedAt, coe_primesOverFinset S p hp]
refine forall₂_congr (fun P hP ↦ ?_)
rw [Ideal.IsDedekindDomain.ramificationIdx_eq_factors_count]
· exact (Ideal.map_eq_bot_iff_of_injective
(NoZeroSMulDivisors.algebraMap_injective R S)).not.mpr hp
· exact hP.1
· exact ne_bot_of_mem_primesOver hp hP

section KummerDedekind

end KummerDedekind

attribute [local instance] Ideal.Quotient.field in
lemma isUnramifiedAt_iff_SquareFree_minpoly [NoZeroSMulDivisors R S] [IsDedekindDomain S]
(p : Ideal R) [hp : p.IsPrime] (hpbot : p ≠ ⊥) (x : S)
(hx : (conductor R x).comap (algebraMap R S) ⊔ p = ⊤) (hx' : IsIntegral R x) :
IsUnramifiedAt S p ↔ Squarefree ((minpoly R x).map (Ideal.Quotient.mk p)) := by
classical
have := hp.isMaximal hpbot
rw [isUnramifiedAt_iff_normalizedFactors_nodup p hpbot,
KummerDedekind.normalizedFactors_ideal_map_eq_normalizedFactors_min_poly_mk_map
this hpbot hx hx', Multiset.nodup_map_iff_of_injective, Multiset.nodup_attach,
← squarefree_iff_nodup_normalizedFactors (Polynomial.map_monic_ne_zero (minpoly.monic hx'))]
exact Subtype.val_injective.comp
(KummerDedekind.normalizedFactorsMapEquivNormalizedFactorsMinPolyMk
this hpbot hx hx').symm.injective

lemma isUnramifiedAt_iff_SquareFree_minpoly_powerBasis [NoZeroSMulDivisors R S] [IsDedekindDomain S]
[Algebra.IsIntegral R S] (pb : PowerBasis R S)
(p : Ideal R) [p.IsPrime] (hpbot : p ≠ ⊥) :
IsUnramifiedAt S p ↔ Squarefree ((minpoly R pb.gen).map (Ideal.Quotient.mk p)) := by
rw [isUnramifiedAt_iff_SquareFree_minpoly p hpbot pb.gen _ _]
rw [conductor_eq_top_of_powerBasis, Ideal.comap_top, top_sup_eq]
exact PowerBasis.isIntegral_gen pb

open nonZeroDivisors Polynomial

Expand Down

1 comment on commit 54cef9c

@erdOne
Copy link
Member

@erdOne erdOne commented on 54cef9c Oct 25, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think isUnramifiedAt_iff_normalizedFactors_nodup can be kept.

Please sign in to comment.