|
| 1 | +#!/usr/bin/env python3 |
| 2 | + |
| 3 | +""" |
| 4 | +Trains a 2-layer MLP with MAML-TRPO on the 'ML' benchmarks of metaworld. |
| 5 | +For more information related to the benchmark check out https://github.com/rlworkgroup/metaworld |
| 6 | +
|
| 7 | +Usage: |
| 8 | +
|
| 9 | +python examples/rl/maml_trpo.py |
| 10 | +""" |
| 11 | + |
| 12 | +import random |
| 13 | +from copy import deepcopy |
| 14 | + |
| 15 | +import cherry as ch |
| 16 | +import numpy as np |
| 17 | +import torch |
| 18 | +from cherry.algorithms import a2c, trpo |
| 19 | +from cherry.models.robotics import LinearValue |
| 20 | +from torch import autograd |
| 21 | +from torch.distributions.kl import kl_divergence |
| 22 | +from torch.nn.utils import parameters_to_vector, vector_to_parameters |
| 23 | +from tqdm import tqdm |
| 24 | + |
| 25 | +import learn2learn as l2l |
| 26 | + |
| 27 | +from learn2learn.gym.envs.metaworld import MetaWorldML1 as ML1 |
| 28 | +from learn2learn.gym.envs.metaworld import MetaWorldML10 as ML10 |
| 29 | +from learn2learn.gym.envs.metaworld import MetaWorldML45 as ML45 |
| 30 | +from policies import DiagNormalPolicy |
| 31 | + |
| 32 | + |
| 33 | +def compute_advantages(baseline, tau, gamma, rewards, dones, states, next_states): |
| 34 | + # Update baseline |
| 35 | + returns = ch.td.discount(gamma, rewards, dones) |
| 36 | + |
| 37 | + baseline.fit(states, returns) |
| 38 | + values = baseline(states) |
| 39 | + next_values = baseline(next_states) |
| 40 | + bootstraps = values * (1.0 - dones) + next_values * dones |
| 41 | + next_value = torch.zeros(1, device=values.device) |
| 42 | + |
| 43 | + return ch.pg.generalized_advantage(tau=tau, |
| 44 | + gamma=gamma, |
| 45 | + rewards=rewards, |
| 46 | + dones=dones, |
| 47 | + values=bootstraps, |
| 48 | + next_value=next_value) |
| 49 | + |
| 50 | + |
| 51 | +def maml_a2c_loss(train_episodes, learner, baseline, gamma, tau): |
| 52 | + # Update policy and baseline |
| 53 | + states = train_episodes.state() |
| 54 | + actions = train_episodes.action() |
| 55 | + rewards = train_episodes.reward() |
| 56 | + dones = train_episodes.done() |
| 57 | + next_states = train_episodes.next_state() |
| 58 | + log_probs = learner.log_prob(states, actions) |
| 59 | + |
| 60 | + advantages = compute_advantages(baseline, tau, gamma, rewards, |
| 61 | + dones, states, next_states) |
| 62 | + advantages = ch.normalize(advantages).detach() |
| 63 | + return a2c.policy_loss(log_probs, advantages) |
| 64 | + |
| 65 | + |
| 66 | +def fast_adapt_a2c(clone, train_episodes, adapt_lr, baseline, gamma, tau, first_order=False): |
| 67 | + second_order = not first_order |
| 68 | + loss = maml_a2c_loss(train_episodes, clone, baseline, gamma, tau) |
| 69 | + gradients = autograd.grad(loss, |
| 70 | + clone.parameters(), |
| 71 | + retain_graph=second_order, |
| 72 | + create_graph=second_order) |
| 73 | + return l2l.algorithms.maml.maml_update(clone, adapt_lr, gradients) |
| 74 | + |
| 75 | + |
| 76 | +def meta_surrogate_loss(iteration_replays, iteration_policies, policy, baseline, tau, gamma, adapt_lr): |
| 77 | + mean_loss = 0.0 |
| 78 | + mean_kl = 0.0 |
| 79 | + for task_replays, old_policy in tqdm(zip(iteration_replays, iteration_policies), |
| 80 | + total=len(iteration_replays), |
| 81 | + desc='Surrogate Loss', |
| 82 | + leave=False): |
| 83 | + train_replays = task_replays[:-1] |
| 84 | + valid_episodes = task_replays[-1] |
| 85 | + new_policy = l2l.clone_module(policy) |
| 86 | + |
| 87 | + # Fast Adapt |
| 88 | + for train_episodes in train_replays: |
| 89 | + new_policy = fast_adapt_a2c(new_policy, train_episodes, adapt_lr, |
| 90 | + baseline, gamma, tau, first_order=False) |
| 91 | + |
| 92 | + # Useful values |
| 93 | + states = valid_episodes.state() |
| 94 | + actions = valid_episodes.action() |
| 95 | + next_states = valid_episodes.next_state() |
| 96 | + rewards = valid_episodes.reward() |
| 97 | + dones = valid_episodes.done() |
| 98 | + |
| 99 | + # Compute KL |
| 100 | + old_densities = old_policy.density(states) |
| 101 | + new_densities = new_policy.density(states) |
| 102 | + kl = kl_divergence(new_densities, old_densities).mean() |
| 103 | + mean_kl += kl |
| 104 | + |
| 105 | + # Compute Surrogate Loss |
| 106 | + advantages = compute_advantages(baseline, tau, gamma, rewards, dones, states, next_states) |
| 107 | + advantages = ch.normalize(advantages).detach() |
| 108 | + old_log_probs = old_densities.log_prob(actions).mean(dim=1, keepdim=True).detach() |
| 109 | + new_log_probs = new_densities.log_prob(actions).mean(dim=1, keepdim=True) |
| 110 | + mean_loss += trpo.policy_loss(new_log_probs, old_log_probs, advantages) |
| 111 | + mean_kl /= len(iteration_replays) |
| 112 | + mean_loss /= len(iteration_replays) |
| 113 | + return mean_loss, mean_kl |
| 114 | + |
| 115 | + |
| 116 | +def make_env(benchmark, seed, num_workers, test=False): |
| 117 | + # Set a specific task or left empty to train on all available tasks |
| 118 | + task = 'push-v1' if benchmark == ML1 else False # In this case, False corresponds to the sample_all argument |
| 119 | + |
| 120 | + def init_env(): |
| 121 | + if test: |
| 122 | + env = benchmark.get_test_tasks(task) |
| 123 | + else: |
| 124 | + env = benchmark.get_train_tasks(task) |
| 125 | + |
| 126 | + env = ch.envs.ActionSpaceScaler(env) |
| 127 | + return env |
| 128 | + |
| 129 | + env = l2l.gym.AsyncVectorEnv([init_env for _ in range(num_workers)]) |
| 130 | + env.seed(seed) |
| 131 | + env.set_task(env.sample_tasks(1)[0]) |
| 132 | + env = ch.envs.Torch(env) |
| 133 | + return env |
| 134 | + |
| 135 | + |
| 136 | +def main( |
| 137 | + benchmark=ML10, # Choose between ML1, ML10, ML45 |
| 138 | + adapt_lr=0.1, |
| 139 | + meta_lr=0.1, |
| 140 | + adapt_steps=1, |
| 141 | + num_iterations=1000, |
| 142 | + meta_bsz=20, |
| 143 | + adapt_bsz=10, # Number of episodes to sample per task |
| 144 | + tau=1.00, |
| 145 | + gamma=0.99, |
| 146 | + seed=42, |
| 147 | + num_workers=10, # Currently tasks are distributed evenly so adapt_bsz should be divisible by num_workers |
| 148 | + cuda=0): |
| 149 | + env = make_env(benchmark, seed, num_workers) |
| 150 | + |
| 151 | + cuda = bool(cuda) |
| 152 | + random.seed(seed) |
| 153 | + np.random.seed(seed) |
| 154 | + torch.manual_seed(seed) |
| 155 | + if cuda: |
| 156 | + torch.cuda.manual_seed(seed) |
| 157 | + |
| 158 | + policy = DiagNormalPolicy(env.state_size, env.action_size, activation='tanh') |
| 159 | + if cuda: |
| 160 | + policy.to('cuda') |
| 161 | + baseline = LinearValue(env.state_size, env.action_size) |
| 162 | + |
| 163 | + for iteration in range(num_iterations): |
| 164 | + iteration_reward = 0.0 |
| 165 | + iteration_replays = [] |
| 166 | + iteration_policies = [] |
| 167 | + |
| 168 | + for task_config in tqdm(env.sample_tasks(meta_bsz), leave=False, desc='Data'): # Samples a new config |
| 169 | + clone = deepcopy(policy) |
| 170 | + env.set_task(task_config) |
| 171 | + env.reset() |
| 172 | + task = ch.envs.Runner(env) |
| 173 | + task_replay = [] |
| 174 | + |
| 175 | + # Fast Adapt |
| 176 | + for step in range(adapt_steps): |
| 177 | + train_episodes = task.run(clone, episodes=adapt_bsz) |
| 178 | + clone = fast_adapt_a2c(clone, train_episodes, adapt_lr, baseline, gamma, tau, first_order=True) |
| 179 | + task_replay.append(train_episodes) |
| 180 | + |
| 181 | + # Compute Validation Loss |
| 182 | + valid_episodes = task.run(clone, episodes=adapt_bsz) |
| 183 | + task_replay.append(valid_episodes) |
| 184 | + |
| 185 | + iteration_reward += valid_episodes.reward().sum().item() / adapt_bsz |
| 186 | + iteration_replays.append(task_replay) |
| 187 | + iteration_policies.append(clone) |
| 188 | + |
| 189 | + # Print statistics |
| 190 | + print('\nIteration', iteration) |
| 191 | + validation_reward = iteration_reward / meta_bsz |
| 192 | + print('validation_reward', validation_reward) |
| 193 | + |
| 194 | + # TRPO meta-optimization |
| 195 | + backtrack_factor = 0.5 |
| 196 | + ls_max_steps = 15 |
| 197 | + max_kl = 0.01 |
| 198 | + if cuda: |
| 199 | + policy.to('cuda', non_blocking=True) |
| 200 | + baseline.to('cuda', non_blocking=True) |
| 201 | + iteration_replays = [[r.to('cuda', non_blocking=True) for r in task_replays] for task_replays in |
| 202 | + iteration_replays] |
| 203 | + |
| 204 | + # Compute CG step direction |
| 205 | + old_loss, old_kl = meta_surrogate_loss(iteration_replays, iteration_policies, policy, baseline, tau, gamma, |
| 206 | + adapt_lr) |
| 207 | + grad = autograd.grad(old_loss, |
| 208 | + policy.parameters(), |
| 209 | + retain_graph=True) |
| 210 | + grad = parameters_to_vector([g.detach() for g in grad]) |
| 211 | + Fvp = trpo.hessian_vector_product(old_kl, policy.parameters()) |
| 212 | + step = trpo.conjugate_gradient(Fvp, grad) |
| 213 | + shs = 0.5 * torch.dot(step, Fvp(step)) |
| 214 | + lagrange_multiplier = torch.sqrt(shs / max_kl) |
| 215 | + step = step / lagrange_multiplier |
| 216 | + step_ = [torch.zeros_like(p.data) for p in policy.parameters()] |
| 217 | + vector_to_parameters(step, step_) |
| 218 | + step = step_ |
| 219 | + del old_kl, Fvp, grad |
| 220 | + old_loss.detach_() |
| 221 | + |
| 222 | + # Line-search |
| 223 | + for ls_step in range(ls_max_steps): |
| 224 | + stepsize = backtrack_factor ** ls_step * meta_lr |
| 225 | + clone = deepcopy(policy) |
| 226 | + for p, u in zip(clone.parameters(), step): |
| 227 | + p.data.add_(-stepsize, u.data) |
| 228 | + new_loss, kl = meta_surrogate_loss(iteration_replays, iteration_policies, clone, baseline, tau, gamma, |
| 229 | + adapt_lr) |
| 230 | + if new_loss < old_loss and kl < max_kl: |
| 231 | + for p, u in zip(policy.parameters(), step): |
| 232 | + p.data.add_(-stepsize, u.data) |
| 233 | + break |
| 234 | + |
| 235 | + # Evaluate on a set of unseen tasks |
| 236 | + evaluate(benchmark, policy, baseline, adapt_lr, gamma, tau, num_workers, seed) |
| 237 | + |
| 238 | + |
| 239 | +def evaluate(benchmark, policy, baseline, adapt_lr, gamma, tau, n_workers, seed): |
| 240 | + # Parameters |
| 241 | + adapt_steps = 3 |
| 242 | + adapt_bsz = 10 |
| 243 | + n_eval_tasks = 10 |
| 244 | + |
| 245 | + tasks_reward = 0. |
| 246 | + |
| 247 | + env = make_env(benchmark, seed, n_workers, test=True) |
| 248 | + eval_task_list = env.sample_tasks(n_eval_tasks) |
| 249 | + |
| 250 | + for i, task in enumerate(eval_task_list): |
| 251 | + clone = deepcopy(policy) |
| 252 | + env.set_task(task) |
| 253 | + env.reset() |
| 254 | + task = ch.envs.Runner(env) |
| 255 | + |
| 256 | + # Adapt |
| 257 | + for step in range(adapt_steps): |
| 258 | + adapt_episodes = task.run(clone, episodes=adapt_bsz) |
| 259 | + clone = fast_adapt_a2c(clone, adapt_episodes, adapt_lr, baseline, gamma, tau, first_order=True) |
| 260 | + |
| 261 | + eval_episodes = task.run(clone, episodes=adapt_bsz) |
| 262 | + |
| 263 | + task_reward = eval_episodes.reward().sum().item() / adapt_bsz |
| 264 | + print(f"Reward for task {i} : {task_reward}") |
| 265 | + tasks_reward += task_reward |
| 266 | + |
| 267 | + final_eval_reward = tasks_reward / n_eval_tasks |
| 268 | + |
| 269 | + print(f"Average reward over {n_eval_tasks} test tasks: {final_eval_reward}") |
| 270 | + |
| 271 | + return final_eval_reward |
| 272 | + |
| 273 | + |
| 274 | +if __name__ == '__main__': |
| 275 | + main() |
0 commit comments