|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 6, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import numpy as np\n", |
| 10 | + "import pandas as pd\n", |
| 11 | + "from spike_tools import (\n", |
| 12 | + " general as spike_general,\n", |
| 13 | + " analysis as spike_analysis,\n", |
| 14 | + ")\n", |
| 15 | + "from scipy.ndimage import gaussian_filter1d\n" |
| 16 | + ] |
| 17 | + }, |
| 18 | + { |
| 19 | + "cell_type": "code", |
| 20 | + "execution_count": 7, |
| 21 | + "metadata": {}, |
| 22 | + "outputs": [], |
| 23 | + "source": [ |
| 24 | + "def firing_rate(spData, channelData, bins, smoothing):\n", |
| 25 | + " bin_size = np.abs(np.diff(bins)[0])\n", |
| 26 | + " # spData is pandas dataframe with at least TrialNumber, UnitId, and SpikeTimeFromStart columns\n", |
| 27 | + " trial_unit_index = pd.MultiIndex.from_product([np.unique(spData.TrialNumber), np.unique(channelData.UnitID).astype(int), bins[:-1]], names=[\"TrialNumber\", \"UnitID\", \"TimeBins\"]).to_frame()\n", |
| 28 | + " trial_unit_index = trial_unit_index.droplevel(2).drop(columns=[\"TrialNumber\", \"UnitID\"]).reset_index()\n", |
| 29 | + " \n", |
| 30 | + " groupedData = spData.groupby([\"TrialNumber\", \"UnitID\"])\n", |
| 31 | + "\n", |
| 32 | + " fr_DF = groupedData.apply(lambda x: pd.DataFrame(\\\n", |
| 33 | + " {\"SpikeCounts\": np.histogram(x.SpikeTimeFromStart/1000, bins)[0],\\\n", |
| 34 | + " \"FiringRate\": gaussian_filter1d(np.histogram(x.SpikeTimeFromStart/1000, bins)[0].astype(float)/bin_size, smoothing),\\\n", |
| 35 | + " \"TimeBins\": bins[:-1]}))\n", |
| 36 | + " #print(\"Trial\", np.unique(trial_unit_index.UnitID))\n", |
| 37 | + " #print(\"FR\", np.unique(fr_DF.droplevel(2).reset_index().UnitID))\n", |
| 38 | + " all_units_df = trial_unit_index.merge(fr_DF.droplevel(2).reset_index(), how='outer', on=[\"TrialNumber\", \"UnitID\", \"TimeBins\"])\n", |
| 39 | + " #for unit in np.unique(all_units_df.UnitID):\n", |
| 40 | + " # unit_df = all_units_df[all_units_df.UnitID == unit]\n", |
| 41 | + " # print(unit_df)\n", |
| 42 | + " # print(unit, len(unit_df))\n", |
| 43 | + " all_units_df.FiringRate = all_units_df.FiringRate.fillna(0.0)\n", |
| 44 | + " all_units_df.SpikeCounts = all_units_df.SpikeCounts.fillna(0)\n", |
| 45 | + " return all_units_df" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": 4, |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "spike_times = pd.read_pickle(\"/data/sub-SA_sess-20180802_spike_times.pickle\")" |
| 55 | + ] |
| 56 | + } |
| 57 | + ], |
| 58 | + "metadata": { |
| 59 | + "kernelspec": { |
| 60 | + "display_name": "Python 3", |
| 61 | + "language": "python", |
| 62 | + "name": "python3" |
| 63 | + }, |
| 64 | + "language_info": { |
| 65 | + "codemirror_mode": { |
| 66 | + "name": "ipython", |
| 67 | + "version": 3 |
| 68 | + }, |
| 69 | + "file_extension": ".py", |
| 70 | + "mimetype": "text/x-python", |
| 71 | + "name": "python", |
| 72 | + "nbconvert_exporter": "python", |
| 73 | + "pygments_lexer": "ipython3", |
| 74 | + "version": "3.10.6" |
| 75 | + }, |
| 76 | + "orig_nbformat": 4 |
| 77 | + }, |
| 78 | + "nbformat": 4, |
| 79 | + "nbformat_minor": 2 |
| 80 | +} |
0 commit comments