diff --git a/format_spikes.ipynb b/format_spikes.ipynb new file mode 100644 index 0000000..9908322 --- /dev/null +++ b/format_spikes.ipynb @@ -0,0 +1,80 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from spike_tools import (\n", + " general as spike_general,\n", + " analysis as spike_analysis,\n", + ")\n", + "from scipy.ndimage import gaussian_filter1d\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def firing_rate(spData, channelData, bins, smoothing):\n", + " bin_size = np.abs(np.diff(bins)[0])\n", + " # spData is pandas dataframe with at least TrialNumber, UnitId, and SpikeTimeFromStart columns\n", + " trial_unit_index = pd.MultiIndex.from_product([np.unique(spData.TrialNumber), np.unique(channelData.UnitID).astype(int), bins[:-1]], names=[\"TrialNumber\", \"UnitID\", \"TimeBins\"]).to_frame()\n", + " trial_unit_index = trial_unit_index.droplevel(2).drop(columns=[\"TrialNumber\", \"UnitID\"]).reset_index()\n", + " \n", + " groupedData = spData.groupby([\"TrialNumber\", \"UnitID\"])\n", + "\n", + " fr_DF = groupedData.apply(lambda x: pd.DataFrame(\\\n", + " {\"SpikeCounts\": np.histogram(x.SpikeTimeFromStart/1000, bins)[0],\\\n", + " \"FiringRate\": gaussian_filter1d(np.histogram(x.SpikeTimeFromStart/1000, bins)[0].astype(float)/bin_size, smoothing),\\\n", + " \"TimeBins\": bins[:-1]}))\n", + " #print(\"Trial\", np.unique(trial_unit_index.UnitID))\n", + " #print(\"FR\", np.unique(fr_DF.droplevel(2).reset_index().UnitID))\n", + " all_units_df = trial_unit_index.merge(fr_DF.droplevel(2).reset_index(), how='outer', on=[\"TrialNumber\", \"UnitID\", \"TimeBins\"])\n", + " #for unit in np.unique(all_units_df.UnitID):\n", + " # unit_df = all_units_df[all_units_df.UnitID == unit]\n", + " # print(unit_df)\n", + " # print(unit, len(unit_df))\n", + " all_units_df.FiringRate = all_units_df.FiringRate.fillna(0.0)\n", + " all_units_df.SpikeCounts = all_units_df.SpikeCounts.fillna(0)\n", + " return all_units_df" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "spike_times = pd.read_pickle(\"/data/sub-SA_sess-20180802_spike_times.pickle\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +}