-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhfunctions.py
241 lines (187 loc) · 8.63 KB
/
hfunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import numpy as np
import matplotlib.pyplot as plt
import random
import time
class HelpfulFunctions:
def makePopulation(heuristic, population_size, cities, randomness):
# initialization
population = []
population_fitness = []
if randomness == 1:
solution_heur = len(cities)
elif randomness == 0.5:
solution_heur = int(len(cities) / 2)
elif randomness == 0.1:
solution_heur = int(len(cities) * 0.1)
else:
solution_heur = 0
for i in range(population_size):
cities_copy = cities[:]
solution = heuristic.generate_solution(cities_copy, solution_heur)
population.append(solution)
population_fitness.append(HelpfulFunctions.evaluate(solution))
return population, population_fitness
def OrderCrossover(first, second):
first_crossover = random.randint(0, len(first)-1)
while True:
second_crossover = random.randint(0, len(first)-1)
if first_crossover != second_crossover:
break
tmp1 = first_crossover
tmp2 = second_crossover
first_crossover = min(tmp1, tmp2)
second_crossover = max(tmp1, tmp2)
child = first[first_crossover:second_crossover]
for i in range(second_crossover, second_crossover + len(second)):
index = i % len(second)
if second[index] not in child:
child.append(second[index])
return child
def draw(population, title):
x = [item[1] for item in population]
y = [item[2] for item in population]
plt.plot(x, y)
plt.plot(x, y, 'ro')
plt.title(title)
plt.show()
def algorithm(population, population_fitness, population_size, tsp_name):
counter = 0
min_res = []
min_fitness = 100000
best_fitnesses = []
while True:
if counter == 100:
break
ELITIST_SIZE = int(population_size/2)
elitists = population[:ELITIST_SIZE]
elitists_fitness = population_fitness[:ELITIST_SIZE]
offspring, offspring_fitness = HelpfulFunctions.generate_offspring(population)
population += offspring
population_fitness += offspring_fitness
for i in reversed(range(len(population))):
if population[i] in elitists:
del population[i]
del population_fitness[i]
# Sort
for _ in range(len(population)):
for j in range(len(population) - 1):
if population_fitness[j] > population_fitness[j+1]:
population[j], population[j+1] = population[j+1], population[j]
population_fitness[j], population_fitness[j+1] = population_fitness[j+1], population_fitness[j]
#roulette wheel
rws = population_fitness[:]
rws = [k ** (-1) for k in rws]
rws = rws / np.sum(rws)
rws = np.cumsum(rws)
#elitism
half = int(population_size / 2)
counter = 0
while counter < half:
random_num = np.random.rand()
for i in range(len(population)):
if random_num <= rws[i]:
elitists.append(population[i])
population.pop(i)
population_fitness.pop(i)
rws = population_fitness[:]
rws = [k ** (-1) for k in rws]
rws = rws / np.sum(rws)
rws = np.cumsum(rws)
counter += 1
break
population = []
population_fitness = []
population = elitists[:]
for i in range(0, len(population)):
population_fitness.append(HelpfulFunctions.evaluate(population[i]))
#sort
for _ in range(len(population)):
for j in range(len(population) - 1):
if population_fitness[j] > population_fitness[j+1]:
population[j], population[j+1] = population[j+1], population[j]
population_fitness[j], population_fitness[j+1] = population_fitness[j+1], population_fitness[j]
if population_fitness[0] < min_fitness - 15:
min_res = population[0]
min_fitness = population_fitness[0]
counter = 0
else:
counter += 1
best_fitnesses.append(population_fitness[0])
x = np.arange(len(best_fitnesses))
#y =
#x = [item[1] for item in population]
#y = [item[2] for item in population]
plt.plot(x, best_fitnesses)
#plt.plot(x, y, 'ro')
#plt.title(title)
plt.show()
return population[0]
def distance(x1, y1, x2, y2):
return np.sqrt(pow(x1 - x2, 2) + pow(y1 - y2, 2))
def generate_offspring(population):
offspring = []
offspring_fitness = []
max_number_of_offsprings = 20
if len(population[0]) >= 50 and len(population[0]) < 100:
max_number_of_offsprings = 30
elif len(population[0]) >= 100:
max_number_of_offsprings = 40
for i in range(len(population)):
if (np.random.rand() < 0.9):
first = i
second = -1
while True:
second = np.random.randint(len(population))
if first != second:
break
first_child = HelpfulFunctions.OrderCrossover(population[first], population[second])
second_child = HelpfulFunctions.OrderCrossover(population[second], population[first])
if np.random.rand() < 0.1:
first_child = HelpfulFunctions.TwoOpt(first_child)
if np.random.rand() < 0.1:
second_child = HelpfulFunctions.TwoOpt(second_child)
offspring.append(first_child)
offspring.append(second_child)
offspring_fitness.append(HelpfulFunctions.evaluate(first_child))
offspring_fitness.append(HelpfulFunctions.evaluate(second_child))
if len(offspring) >= max_number_of_offsprings:
break
return offspring, offspring_fitness
def calculate_end(n):
end = n
for i in range(1, n + 1):
end += i
return end
def evaluate(solution):
dist = 0
for i in range(0, len(solution) - 1):
dist += HelpfulFunctions.distance(solution[i][1], solution[i][2], solution[i + 1][1], solution[i + 1][2])
dist += HelpfulFunctions.distance(solution[-1][1], solution[-1][2], solution[0][1], solution[0][2])
return dist
def TwoOpt(solution):
improved = True
while improved:
improved = False
for i in range(0, len(solution) - 2):
for j in range(i + 2, len(solution) - 1):
if j - i == 1:
continue
u1 = i
u2 = i + 1
v1 = j
v2 = j + 1
d1 = HelpfulFunctions.distance(solution[u1][1], solution[u1][2], solution[u2][1], solution[u2][2])
d2 = HelpfulFunctions.distance(solution[v1][1], solution[v1][2], solution[v2][1], solution[v2][2])
d1_new = HelpfulFunctions.distance(solution[u1][1], solution[u1][2], solution[v1][1], solution[v1][2])
d2_new = HelpfulFunctions.distance(solution[u2][1], solution[u2][2], solution[v2][1], solution[v2][2])
old = d1 + d2
new = d1_new + d2_new
if new < old:
reversed_solution = solution[u2:v1+1]
reversed_solution.reverse()
solution[u2:v1+1] = reversed_solution
improved = True
break
if improved:
break
return solution