-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
100 lines (88 loc) · 2.86 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from MineSweeper import *
from Agent import *
import pickle
import matplotlib.pyplot as plt
gridSize = 5
numberOfMines = 3
def main():
test()
# train()
def test():
# create a new game
cgridSize = 9
cnumberOfMines = 10
numberOfGames = 1000
countOfWinGame = 0
for i in range(numberOfGames):
####################Playing a game ######################
# initializing a minesweeper game
game = MineSweeper(gridsize=cgridSize, numberOfMines=cnumberOfMines)
# reading trained q_matrix
q_matrix = pickle.load(open('Q_Matrix%d_%d.p' % (gridSize, numberOfMines), "rb"))
#initializing an agent for that q_matrix and game
agent = Agent(Q_Matrix=q_matrix, gameObject=game)
r = 0
#showing current grid of game
game.showgrid(game.currgrid)
while r!=-1 and r !=1:
# agent returns its decision for the action
loc = agent.play() # get an action for current grid
print(loc)
# passing the location to game
r = game.playgame(loc) # doing an action
#############################################################################
if r == 1:
countOfWinGame = countOfWinGame + 1
# return
print('%d win games over %d games'%(countOfWinGame, numberOfGames))
def train():
game = MineSweeper(gridsize=gridSize, numberOfMines=numberOfMines)
agent = Agent(gameObject=game)
epsilon = 0.1
delta = 0.01
numberOfEpoch = 100000
m = numberOfEpoch * delta
epoch = 1
# running for xxx epochs
scores = []
while 1:
if epsilon > 1:
break
if epoch % m == 0:
epsilon = epsilon + delta
r = agent.train(epsilon)
# run an epoch
# each correct step, score = 1
score = 0
if r != -1 and r != 1:
while 1:
score = score + 1
r = agent.train(epsilon)
# a win game gives a score of 3
if r == 1:
score = score + 3
break
if r == -1:
break
scores.append(score)
epoch = epoch + 1
# take average for every m elements
m = int(m)
i = 0
finalScores = []
tmpScore = []
for score in scores:
i = i + 1
tmpScore.append(score)
if i % m == 0:
finalScores.append(np.mean(np.array(tmpScore)))
tmpScore = []
print(epoch)
plt.plot(finalScores)
plt.title("MineSweeper of %d x %d with %d mines" % (gridSize, gridSize, numberOfMines))
plt.xlabel("%d X Epochs" % int(m))
plt.ylabel("Score")
plt.savefig('player%d_%d.png' % (gridSize, numberOfMines))
pickle.dump(agent.Q_Matrix, open('Q_Matrix%d_%d.p' % (gridSize, numberOfMines), "wb"))
if __name__ == '__main__':
main()