Skip to content

Error while reading old trained models and dimer descriptors issue #627

Open
@OlgaChalykh

Description

@OlgaChalykh

Dear QUIP developers,

I am going into details of Max Veit's paper https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b01242 and exploring the archives with the trained models, datasets, and training scripts published at https://www.repository.cam.ac.uk/items/f8cfd6c4-4323-4d29-b05d-177928150a45.

It looks like QUIP commands have changed since the paper publication. Regarding this, I have some questions:

  1. when I am trying to use any trained model, I get error:
    SYSTEM ABORT: Potential_read_params_xml: could not initialize potential from xml_label
    Can I modify trained models files to use them?

  2. I was trying to modify the training script for 6-D dimer GAP. I excluded core_param_file and excluded substituted general_dimer descriptor with A2_dimer keeping other parameters and training set the same, but got error:

SYSTEM ABORT: Traceback (most recent call last)
File "/project/src/libAtoms/Topology.f95", line 2536 kind unspecified
Cannot find pair for atom index 2           
STOP 1

Seems like it is a problem with monomer cutoff, but when I increased those parameters it did not solve the problem. Unfortunately, I did not find detailed instructions on how to work with dimer descriptors. How can I solve this problem?

Training script I use:

!gap_fit at_file=./bulk-methane-fit-dimer/repo-fit-dimer/me-rigid-shortaug3-gscc.xyz \
gap={A2_dimer cutoff=6.0 \
     cutoff_transition_width=1.0 \
     signature_one={6 1 1 1 1} \
     signature_two={6 1 1 1 1} \
     monomer_one_cutoff=1.5 \
     monomer_two_cutoff=1.5 \
     atom_ordercheck=F \
     strict=F\
     mpifind=T \
     theta_uniform=1.0 \
     covariance_type=ARD_SE \
     n_sparse=2000\
     delta=0.02 \
     sparse_method=CUR_COVARIANCE } \
default_sigma={0.0002 0.002 0.0 0.0}\
sparse_jitter=1e-10 \
energy_parameter_name=energy \
force_parameter_name=force \
e0=0.0 \
gp_file=./models/gp.xml \
do_copy_at_file=F

The original training script from paper's supplementary material:

teach_sparseat_file=me-rigid-shortaug3-mp2-avqz-intnonan.xyz core_param_file={../empirical-pots/ljrep_quip_params.xml} core_ip_args={IPLJ} gap={ general_dimercutoff=6.0 cutoff_transition_width=1.0 signature_one={{61 11 1}} signature_two={{6 11 1 1}} monomer_one_cutoff=1.5monomer_two_cutoff=1.5atom_ordercheck=F strict=Fmpifind=T theta_uniform=1.0covariance_type=ARD_SE n_sparse=2000delta=0.02 sparse_method=CUR_COVARIANCE } default_sigma={0.0002 0.0020.0 0.0}sparse_jitter=1e-10 energy_parameter_name=energyforce_parameter_name=forcee0=0.0 gp_file=gp-merig-mp2-gendim-shortaug3.xml do_copy_at_file=F

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions