-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathmain.py
182 lines (147 loc) · 6.95 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import __init__
import numpy as np
import logging
import torch
from torch import nn
from torch.utils.data import DataLoader
from config import OptInit
from architecture import DeepGCN
import sklearn.metrics as metrics
from utils.ckpt_util import load_pretrained_models, load_pretrained_optimizer
from utils.metrics import AverageMeter
from utils.loss import SmoothCrossEntropy
from data import ModelNet40
from tqdm import tqdm
def train(model, train_loader, test_loader, opt):
logging.info('===> Init the optimizer ...')
criterion = SmoothCrossEntropy()
if opt.use_sgd:
logging.info("===> Use SGD")
optimizer = torch.optim.SGD(model.parameters(), lr=opt.lr * 100, momentum=0.9, weight_decay=opt.weight_decay)
else:
logging.info("===> Use Adam")
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr, weight_decay=opt.weight_decay)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, opt.epochs, eta_min=opt.lr)
optimizer, scheduler, opt.lr = load_pretrained_optimizer(opt.pretrained_model, optimizer, scheduler, opt.lr)
logging.info('===> Init Metric ...')
opt.train_losses = AverageMeter()
opt.test_losses = AverageMeter()
best_test_overall_acc = 0.
avg_acc_when_best = 0.
logging.info('===> start training ...')
for _ in range(opt.epoch, opt.epochs):
opt.epoch += 1
# reset tracker
opt.train_losses.reset()
opt.test_losses.reset()
train_overall_acc, train_class_acc, opt = train_step(model, train_loader, optimizer, criterion, opt)
test_overall_acc, test_class_acc, opt = infer(model, test_loader, criterion, opt)
scheduler.step()
# ------------------ save ckpt
if test_overall_acc > best_test_overall_acc:
best_test_overall_acc = test_overall_acc
avg_acc_when_best = test_class_acc
logging.info("Got a new best model on Test with Overall ACC {:.4f}. "
"Its avg acc is {:.4f}".format(best_test_overall_acc, avg_acc_when_best))
save_ckpt(model, optimizer, scheduler, opt, 'best')
# ------------------ show information
logging.info(
"===> Epoch {}/{}, Train Loss {:.4f}, Test Overall Acc {:.4f}, Test Avg Acc {:4f}, "
"Best Test Overall Acc {:.4f}, Its test avg acc {:.4f}.".format(
opt.epoch, opt.epochs, opt.train_losses.avg, test_overall_acc,
test_class_acc, best_test_overall_acc, avg_acc_when_best))
info = {
'train_loss': opt.train_losses.avg,
'train_OA': train_overall_acc,
'train_avg_acc': train_class_acc,
'test_loss': opt.test_losses.avg,
'test_OA': test_overall_acc,
'test_avg_acc': test_class_acc,
'lr': scheduler.get_lr()[0]
}
for tag, value in info.items():
opt.writer.add_scalar(tag, value, opt.step)
save_ckpt(model, optimizer, scheduler, opt, 'last')
logging.info(
'Saving the final model.Finish! Best Test Overall Acc {:.4f}, Its test avg acc {:.4f}. '
'Last Test Overall Acc {:.4f}, Its test avg acc {:.4f}.'.
format(best_test_overall_acc, avg_acc_when_best,
test_overall_acc, test_class_acc))
def train_step(model, train_loader, optimizer, criterion, opt):
model.train()
train_pred = []
train_true = []
for data, label in tqdm(train_loader):
data, label = data.to(opt.device), label.to(opt.device).squeeze()
data = data.permute(0, 2, 1).unsqueeze(-1)
optimizer.zero_grad()
logits = model(data)
loss = criterion(logits, label)
loss.backward()
optimizer.step()
opt.train_losses.update(loss.item())
preds = logits.max(dim=1)[1]
train_true.append(label.cpu().numpy())
train_pred.append(preds.detach().cpu().numpy())
train_true = np.concatenate(train_true)
train_pred = np.concatenate(train_pred)
overall_acc = metrics.accuracy_score(train_true, train_pred)
class_acc = metrics.balanced_accuracy_score(train_true, train_pred)
return overall_acc, class_acc, opt
def infer(model, test_loader, criterion, opt):
model.eval()
test_true = []
test_pred = []
with torch.no_grad():
for i, (data, label) in enumerate(test_loader):
data, label = data.to(opt.device), label.to(opt.device).squeeze()
data = data.permute(0, 2, 1).unsqueeze(-1)
logits = model(data)
loss = criterion(logits, label.squeeze())
pred = logits.max(dim=1)[1]
test_true.append(label.cpu().numpy())
test_pred.append(pred.detach().cpu().numpy())
opt.test_losses.update(loss.item())
test_true = np.concatenate(test_true)
test_pred = np.concatenate(test_pred)
overall_acc = metrics.accuracy_score(test_true, test_pred)
class_acc = metrics.balanced_accuracy_score(test_true, test_pred)
return overall_acc, class_acc, opt
def save_ckpt(model, optimizer, scheduler, opt, name_post):
# ------------------ save ckpt
filename = '{}/{}_model.pth'.format(opt.ckpt_dir, opt.exp_name + '-' + name_post)
model_cpu = {k: v.cpu() for k, v in model.state_dict().items()}
state = {
'epoch': opt.epoch,
'state_dict': model_cpu,
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'best_value': opt.best_value,
}
torch.save(state, filename)
logging.info('save a new best model into {}'.format(filename))
if __name__ == '__main__':
opt = OptInit().get_args()
logging.info('===> Creating data-loader ...')
train_loader = DataLoader(ModelNet40(data_dir=opt.data_dir, partition='train', num_points=opt.num_points),
num_workers=8, batch_size=opt.batch_size, shuffle=True, drop_last=True)
test_loader = DataLoader(ModelNet40(data_dir=opt.data_dir, partition='test', num_points=opt.num_points),
num_workers=8, batch_size=opt.test_batch_size, shuffle=True, drop_last=False)
opt.n_classes = train_loader.dataset.num_classes()
logging.info('===> Loading ModelNet40 from {}. number of classes equal to {}'.format(opt.data_dir, opt.n_classes))
logging.info('===> Loading the network ...')
model = DeepGCN(opt)
if opt.multi_gpus:
model = nn.DataParallel(model)
model = model.to(opt.device)
logging.info(model)
logging.info('===> loading pre-trained ...')
model, opt.best_value, opt.epoch = load_pretrained_models(model, opt.pretrained_model, opt.phase)
if opt.phase == 'train':
train(model, train_loader, test_loader, opt)
else:
criterion = SmoothCrossEntropy()
opt.test_losses = AverageMeter()
test_overall_acc, test_class_acc, opt = infer(model, test_loader, criterion, opt)
logging.info(
'Test Overall Acc {:.4f}, Its test avg acc {:.4f}.'.format(test_overall_acc, test_class_acc))