This repository has been archived by the owner on Oct 10, 2024. It is now read-only.
forked from dandi/dandi-schema
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetadata.py
404 lines (359 loc) · 15.5 KB
/
metadata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
from copy import deepcopy
from enum import Enum
from functools import lru_cache
from inspect import isclass
import json
from pathlib import Path
from typing import Any, Dict, Iterable, Optional, TypeVar, Union, cast, get_args
import jsonschema
import pydantic
import requests
from .consts import (
ALLOWED_INPUT_SCHEMAS,
ALLOWED_TARGET_SCHEMAS,
ALLOWED_VALIDATION_SCHEMAS,
DANDI_SCHEMA_VERSION,
)
from .exceptions import JsonschemaValidationError, PydanticValidationError
from . import models
from .utils import (
TransitionalGenerateJsonSchema,
_ensure_newline,
strip_top_level_optional,
version2tuple,
)
schema_map = {
"Dandiset": "dandiset.json",
"PublishedDandiset": "published-dandiset.json",
"Asset": "asset.json",
"PublishedAsset": "published-asset.json",
}
def generate_context() -> dict:
import pydantic
field_preamble = {
"@version": 1.1,
"dandi": "http://schema.dandiarchive.org/",
"dcite": "http://schema.dandiarchive.org/datacite/",
"dandiasset": "http://dandiarchive.org/asset/",
"DANDI": "http://dandiarchive.org/dandiset/",
"dct": "http://purl.org/dc/terms/",
"owl": "http://www.w3.org/2002/07/owl#",
"rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
"rdfa": "http://www.w3.org/ns/rdfa#",
"rdfs": "http://www.w3.org/2000/01/rdf-schema#",
"schema": "http://schema.org/",
"xsd": "http://www.w3.org/2001/XMLSchema#",
"skos": "http://www.w3.org/2004/02/skos/core#",
"prov": "http://www.w3.org/ns/prov#",
"pav": "http://purl.org/pav/",
"nidm": "http://purl.org/nidash/nidm#",
"uuid": "http://uuid.repronim.org/",
"rs": "http://schema.repronim.org/",
"RRID": "https://scicrunch.org/resolver/RRID:",
"ORCID": "https://orcid.org/",
"ROR": "https://ror.org/",
"PATO": "http://purl.obolibrary.org/obo/PATO_",
"spdx": "http://spdx.org/licenses/",
}
fields: Dict[str, Any] = {}
for val in dir(models):
klass = getattr(models, val)
if not isclass(klass) or not issubclass(klass, pydantic.BaseModel):
continue
if hasattr(klass, "_ldmeta"):
if "nskey" in klass._ldmeta.default:
name = klass.__name__
fields[name] = f'{klass._ldmeta.default["nskey"]}:{name}'
for name, field in klass.model_fields.items():
if name == "id":
fields[name] = "@id"
elif name == "schemaKey":
fields[name] = "@type"
elif name == "digest":
fields[name] = "@nest"
elif name not in fields:
if (
isinstance(field.json_schema_extra, dict)
and "nskey" in field.json_schema_extra
):
fields[name] = {
"@id": cast(str, field.json_schema_extra["nskey"]) + ":" + name
}
else:
fields[name] = {"@id": "dandi:" + name}
# The annotation without the top-level optional
stripped_annotation = strip_top_level_optional(field.annotation)
# Using stringification to detect present of list in annotation is not
# ideal, but it works for now. A better solution should be used in the
# future.
if "list" in str(stripped_annotation).lower():
fields[name]["@container"] = "@set"
# Handle the case where the type of the element of a list is
# an Enum type
type_args = get_args(stripped_annotation)
if (
len(type_args) == 1
and isclass(type_args[0])
and issubclass(type_args[0], Enum)
):
fields[name]["@type"] = "@id"
if name == "contributor":
fields[name]["@container"] = "@list"
if (
isclass(stripped_annotation)
and issubclass(stripped_annotation, Enum)
or name in ["url", "hasMember"]
):
fields[name]["@type"] = "@id"
for item in models.DigestType:
fields[item.value] = {"@id": item.value, "@nest": "digest"}
fields["Dandiset"] = "dandi:Dandiset"
fields["Asset"] = "dandi:Asset"
fields = {k: fields[k] for k in sorted(fields)}
field_preamble.update(**fields)
return {"@context": field_preamble}
def publish_model_schemata(releasedir: Union[str, Path]) -> Path:
version = models.get_schema_version()
vdir = Path(releasedir, version)
vdir.mkdir(exist_ok=True, parents=True)
for class_, filename in schema_map.items():
(vdir / filename).write_text(
_ensure_newline(
json.dumps(
getattr(models, class_).model_json_schema(
schema_generator=TransitionalGenerateJsonSchema
),
indent=2,
)
)
)
(vdir / "context.json").write_text(
_ensure_newline(json.dumps(generate_context(), indent=2))
)
return vdir
def _validate_obj_json(data: dict, schema: dict, missing_ok: bool = False) -> None:
validator: Union[jsonschema.Draft202012Validator, jsonschema.Draft7Validator]
if version2tuple(data["schemaVersion"]) >= version2tuple("0.6.5"):
# schema version 0.7.0 and above is produced with Pydantic V2
# which is compliant with JSON Schema Draft 2020-12
validator = jsonschema.Draft202012Validator(
schema, format_checker=jsonschema.Draft202012Validator.FORMAT_CHECKER
)
else:
validator = jsonschema.Draft7Validator(
schema, format_checker=jsonschema.Draft7Validator.FORMAT_CHECKER
)
error_list = []
for error in sorted(validator.iter_errors(data), key=str):
if missing_ok and "is a required property" in error.message:
continue
error_list.append(error)
if error_list:
raise JsonschemaValidationError(error_list)
def _validate_dandiset_json(data: dict, schema_dir: Union[str, Path]) -> None:
with Path(schema_dir, "dandiset.json").open() as fp:
schema = json.load(fp)
_validate_obj_json(data, schema)
def _validate_asset_json(data: dict, schema_dir: Union[str, Path]) -> None:
with Path(schema_dir, "asset.json").open() as fp:
schema = json.load(fp)
_validate_obj_json(data, schema)
@lru_cache
def _get_schema(schema_version: str, schema_name: str) -> Any:
return requests.get(
"https://raw.githubusercontent.com/dandi/schema/"
f"master/releases/{schema_version}/{schema_name}"
).json()
def validate(
obj: dict,
schema_version: Optional[str] = None,
schema_key: Optional[str] = None,
missing_ok: bool = False,
json_validation: bool = False,
) -> None:
"""Validate object using pydantic
Parameters
----------
schema_version: str, optional
Version of schema to validate against. If not specified, the schema
version specified in `schemaVersion` attribute of object will be used,
and if not present - our current DANDI_SCHEMA_VERSION
schema_key: str, optional
Name of the schema key to be used, if not specified, `schemaKey` of the
object will be consulted
missing_ok: bool, optional
This flag allows checking if all fields have appropriate values but ignores
missing fields. A `ValueError` is raised with the list of all errors.
json_validation: bool, optional
If set to True, `obj` is first validated against the corresponding jsonschema.
Returns
-------
None
Raises
--------
ValueError:
if no schema_key is provided and object doesn't provide schemaKey or
is missing properly formatted values
ValidationError
if obj fails validation
"""
schema_key = schema_key or obj.get("schemaKey")
if schema_key is None:
raise ValueError("Provided object has no known schemaKey")
schema_version = schema_version or obj.get("schemaVersion")
if schema_version not in ALLOWED_VALIDATION_SCHEMAS and schema_key in schema_map:
raise ValueError(
f"Metadata version {schema_version} is not allowed. "
f"Allowed are: {', '.join(ALLOWED_VALIDATION_SCHEMAS)}."
)
if json_validation:
if schema_version == DANDI_SCHEMA_VERSION:
klass = getattr(models, schema_key)
schema = klass.model_json_schema(
schema_generator=TransitionalGenerateJsonSchema
)
else:
if schema_key not in schema_map:
raise ValueError(
"Only dandisets and assets can be validated "
"using json schema for older versions"
)
schema = _get_schema(schema_version, schema_map[schema_key])
_validate_obj_json(obj, schema, missing_ok)
klass = getattr(models, schema_key)
try:
klass(**obj)
except pydantic.ValidationError as exc:
messages = []
for el in exc.errors():
if not missing_ok or el["type"] != "missing":
messages.append(el)
if messages:
raise PydanticValidationError(messages) # type: ignore[arg-type]
def migrate(
obj: dict,
to_version: Optional[str] = DANDI_SCHEMA_VERSION,
skip_validation: bool = False,
) -> dict:
"""Migrate dandiset metadata object to new schema"""
obj = deepcopy(obj)
if len(ALLOWED_TARGET_SCHEMAS) > 1:
raise NotImplementedError(
"ATM code below supports migration to current version only"
)
if to_version not in ALLOWED_TARGET_SCHEMAS:
raise ValueError(f"Current target schemas: {ALLOWED_TARGET_SCHEMAS}.")
schema_version = obj.get("schemaVersion")
if schema_version == DANDI_SCHEMA_VERSION:
return obj
if schema_version not in ALLOWED_INPUT_SCHEMAS:
raise ValueError(f"Current input schemas supported: {ALLOWED_INPUT_SCHEMAS}.")
if version2tuple(schema_version) > version2tuple(to_version):
raise ValueError(f"Cannot migrate from {schema_version} to lower {to_version}.")
if not (skip_validation):
schema = _get_schema(schema_version, "dandiset.json")
_validate_obj_json(obj, schema)
if version2tuple(schema_version) < version2tuple("0.6.0"):
for val in obj.get("about", []):
if "schemaKey" not in val:
if "identifier" in val and "UBERON" in val["identifier"]:
val["schemaKey"] = "Anatomy"
else:
raise ValueError("Cannot auto migrate. SchemaKey missing")
for val in obj.get("access", []):
if "schemaKey" not in val:
val["schemaKey"] = "AccessRequirements"
for resource in obj.get("relatedResource", []):
resource["schemaKey"] = "Resource"
if "schemaKey" not in obj["assetsSummary"]:
obj["assetsSummary"]["schemaKey"] = "AssetsSummary"
if "schemaKey" not in obj:
obj["schemaKey"] = "Dandiset"
obj["schemaVersion"] = to_version
return obj
_stats_var_type = TypeVar("_stats_var_type", int, list)
_stats_type = Dict[str, _stats_var_type]
def _get_samples(value: dict, stats: _stats_type, hierarchy: Any) -> _stats_type:
if "sampleType" in value:
sampletype = value["sampleType"]["name"]
obj = value["identifier"].replace("_", "-")
if obj not in stats[sampletype]:
stats[sampletype].append(obj)
if "wasDerivedFrom" in value:
for entity in value["wasDerivedFrom"]:
if entity.get("schemaKey") == "BioSample":
stats = _get_samples(entity, stats, hierarchy)
break
return stats
def _add_asset_to_stats(assetmeta: Dict[str, Any], stats: _stats_type) -> None:
"""Add information about asset to the `stats` dict (to populate AssetsSummary)"""
if "schemaVersion" not in assetmeta:
raise ValueError("Provided metadata has no schema version")
schema_version = cast(str, assetmeta.get("schemaVersion"))
if schema_version not in ALLOWED_INPUT_SCHEMAS:
raise ValueError(
f"Metadata version {schema_version} is not allowed. "
f"Allowed are: {', '.join(ALLOWED_INPUT_SCHEMAS)}."
)
stats["numberOfBytes"] = stats.get("numberOfBytes", 0)
stats["numberOfFiles"] = stats.get("numberOfFiles", 0)
stats["numberOfBytes"] += assetmeta["contentSize"]
stats["numberOfFiles"] += 1
for key in ["approach", "measurementTechnique", "variableMeasured"]:
stats_values = stats.get(key) or []
for val in assetmeta.get(key) or []:
if key == "variableMeasured":
val = val["value"]
if val not in stats_values:
stats_values.append(val)
stats[key] = stats_values
stats["subjects"] = stats.get("subjects", [])
stats["species"] = stats.get("species", [])
for value in assetmeta.get("wasAttributedTo", []):
if value.get("schemaKey") == "Participant":
if "species" in value:
if value["species"] not in stats["species"]:
stats["species"].append(value["species"])
if value.get("identifier", None):
subject = value["identifier"].replace("_", "-")
if subject not in stats["subjects"]:
stats["subjects"].append(subject)
hierarchy = ["cell", "slice", "tissuesample"]
for val in hierarchy:
stats[val] = stats.get(val, [])
for value in assetmeta.get("wasDerivedFrom") or []:
if value.get("schemaKey") == "BioSample":
stats = _get_samples(value, stats, hierarchy)
break
for part in Path(assetmeta["path"]).name.split(".")[0].split("_"):
if part.startswith("sub-"):
subject = part.replace("sub-", "")
if subject not in stats["subjects"]:
stats["subjects"].append(subject)
if part.startswith("sample-"):
sample = part.replace("sample-", "")
if sample not in stats["tissuesample"]:
stats["tissuesample"].append(sample)
stats["dataStandard"] = stats.get("dataStandard", [])
if "nwb" in assetmeta["encodingFormat"]:
if models.nwb_standard not in stats["dataStandard"]:
stats["dataStandard"].append(models.nwb_standard)
# TODO: RF assumption that any .json implies BIDS
if set(Path(assetmeta["path"]).suffixes).intersection((".json", ".nii")):
if models.bids_standard not in stats["dataStandard"]:
stats["dataStandard"].append(models.bids_standard)
# TODO?: move/bind such helpers as .from_metadata or alike within
# model classes themselves to centralize access to those constructors.
def aggregate_assets_summary(metadata: Iterable[Dict[str, Any]]) -> dict:
"""Given an iterable of metadata records produce AssetSummary"""
stats: _stats_type = {}
for meta in metadata:
_add_asset_to_stats(meta, stats)
stats["numberOfBytes"] = stats.get("numberOfBytes", 0)
stats["numberOfFiles"] = stats.get("numberOfFiles", 0)
stats["numberOfSubjects"] = len(stats.pop("subjects", [])) or None
stats["numberOfSamples"] = (
len(stats.pop("tissuesample", [])) + len(stats.pop("slice", []))
) or None
stats["numberOfCells"] = len(stats.pop("cell", [])) or None
return models.AssetsSummary(**stats).model_dump(mode="json", exclude_none=True)