diffusion_models.models.multicoil.MultiCoilConv2d
+-
+
- +class diffusion_models.models.multicoil.MultiCoilConv2d(*args, **kwargs) +
Bases:
+Module
Initializes internal Module state, shared by both nn.Module and ScriptModule.
+Methods
++ +
+ + +add_module
(name, module) +Adds a child module to the current module.
+ +apply
(fn) +Applies
fn
recursively to every submodule (as returned by.children()
) as well as self. + +bfloat16
() +Casts all floating point parameters and buffers to
bfloat16
datatype. + +buffers
([recurse]) +Returns an iterator over module buffers.
+ +children
() +Returns an iterator over immediate children modules.
+ +compile
(*args, **kwargs) +Compile this Module's forward using
torch.compile()
. + +cpu
() +Moves all model parameters and buffers to the CPU.
+ +cuda
([device]) +Moves all model parameters and buffers to the GPU.
+ +double
() +Casts all floating point parameters and buffers to
double
datatype. + +eval
() +Sets the module in evaluation mode.
+ +extra_repr
() +Set the extra representation of the module
+ +float
() +Casts all floating point parameters and buffers to
float
datatype. + +forward
(x) +Defines the computation performed at every call.
+ +get_buffer
(target) +Returns the buffer given by
target
if it exists, otherwise throws an error. + +get_extra_state
() +Returns any extra state to include in the module's state_dict.
+ +get_parameter
(target) +Returns the parameter given by
target
if it exists, otherwise throws an error. + +get_submodule
(target) +Returns the submodule given by
target
if it exists, otherwise throws an error. + +half
() +Casts all floating point parameters and buffers to
half
datatype. + +ipu
([device]) +Moves all model parameters and buffers to the IPU.
+ +load_state_dict
(state_dict[, strict, assign]) +Copies parameters and buffers from
state_dict
into this module and its descendants. + +modules
() +Returns an iterator over all modules in the network.
+ +named_buffers
([prefix, recurse, ...]) +Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
+ +named_children
() +Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
+ +named_modules
([memo, prefix, remove_duplicate]) +Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
+ +named_parameters
([prefix, recurse, ...]) +Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
+ +parameters
([recurse]) +Returns an iterator over module parameters.
+ +register_backward_hook
(hook) +Registers a backward hook on the module.
+ +register_buffer
(name, tensor[, persistent]) +Adds a buffer to the module.
+ +register_forward_hook
(hook, *[, prepend, ...]) +Registers a forward hook on the module.
+ +register_forward_pre_hook
(hook, *[, ...]) +Registers a forward pre-hook on the module.
+ +register_full_backward_hook
(hook[, prepend]) +Registers a backward hook on the module.
+ +register_full_backward_pre_hook
(hook[, prepend]) +Registers a backward pre-hook on the module.
+ +register_load_state_dict_post_hook
(hook) +Registers a post hook to be run after module's
load_state_dict
is called. + +register_module
(name, module) +Alias for
add_module()
. + +register_parameter
(name, param) +Adds a parameter to the module.
+ +register_state_dict_pre_hook
(hook) +These hooks will be called with arguments:
self
,prefix
, andkeep_vars
before callingstate_dict
onself
. + +requires_grad_
([requires_grad]) +Change if autograd should record operations on parameters in this module.
+ +set_extra_state
(state) +This function is called from
load_state_dict()
to handle any extra state found within the state_dict. + +share_memory
() +See
torch.Tensor.share_memory_()
+ +state_dict
(*args[, destination, prefix, ...]) +Returns a dictionary containing references to the whole state of the module.
+ +to
(*args, **kwargs) +Moves and/or casts the parameters and buffers.
+ +to_empty
(*, device[, recurse]) +Moves the parameters and buffers to the specified device without copying storage.
+ +train
([mode]) +Sets the module in training mode.
+ +type
(dst_type) +Casts all parameters and buffers to
dst_type
. + +xpu
([device]) +Moves all model parameters and buffers to the XPU.
+ + +zero_grad
([set_to_none]) +Resets gradients of all model parameters.
Attributes
++ +
+ + +T_destination
+ + +call_super_init
+ + +dump_patches
+ + + +training
+ -
+
- +forward(x) +
Defines the computation performed at every call.
+Should be overridden by all subclasses. +:rtype:
+Float[Tensor, 'batch coils out_channels height width']
++Note
+Although the recipe for forward pass needs to be defined within +this function, one should call the
+Module
instance afterwards +instead of this since the former takes care of running the +registered hooks while the latter silently ignores them.