Documentation of Uni-Mol tools is available at https://unimol.readthedocs.io/en/latest/
- Notice: Uni-Core is needed, please install it first. Current Uni-Core requires torch>=2.0.0 by default, if you want to install other version, please check its Installation Documentation.
## unicore and other dependencies installation
pip install -r requirements.txt
## clone repo
git clone https://github.com/dptech-corp/Uni-Mol.git
cd Uni-Mol/unimol_tools/unimol_tools
## download pretrained weights
wget https://github.com/dptech-corp/Uni-Mol/releases/download/v0.1/mol_pre_all_h_220816.pt
wget https://github.com/dptech-corp/Uni-Mol/releases/download/v0.1/mol_pre_no_h_220816.pt
wget https://github.com/dptech-corp/Uni-Mol/releases/download/v0.1/pocket_pre_220816.pt
wget https://github.com/dptech-corp/Uni-Mol/releases/download/v0.1/mof_pre_no_h_CORE_MAP_20230505.pt
wget https://github.com/dptech-corp/Uni-Mol/releases/download/v0.1/mp_all_h_230313.pt
wget https://github.com/dptech-corp/Uni-Mol/releases/download/v0.1/oled_pre_no_h_230101.pt
mkdir -p weights
mv *.pt weights/
## install
cd ..
python setup.py install
- unimol_tools documents is coming soon.
from unimol_tools import MolTrain, MolPredict
clf = MolTrain(task='classification',
data_type='molecule',
epochs=10,
batch_size=16,
metrics='auc',
)
pred = clf.fit(data = data)
# currently support data with smiles based csv/txt file, and
# custom dict of {'atoms':[['C','C],['C','H','O']], 'coordinates':[coordinates_1,coordinates_2]}
clf = MolPredict(load_model='../exp')
res = clf.predict(data = data)
import numpy as np
from unimol_tools import UniMolRepr
# single smiles unimol representation
clf = UniMolRepr(data_type='molecule', remove_hs=False)
smiles = 'c1ccc(cc1)C2=NCC(=O)Nc3c2cc(cc3)[N+](=O)[O]'
smiles_list = [smiles]
unimol_repr = clf.get_repr(smiles_list, return_atomic_reprs=True)
# CLS token repr
print(np.array(unimol_repr['cls_repr']).shape)
# atomic level repr, align with rdkit mol.GetAtoms()
print(np.array(unimol_repr['atomic_reprs']).shape)
Please kindly cite our papers if you use the data/code/model.
@inproceedings{
zhou2023unimol,
title={Uni-Mol: A Universal 3D Molecular Representation Learning Framework},
author={Gengmo Zhou and Zhifeng Gao and Qiankun Ding and Hang Zheng and Hongteng Xu and Zhewei Wei and Linfeng Zhang and Guolin Ke},
booktitle={The Eleventh International Conference on Learning Representations },
year={2023},
url={https://openreview.net/forum?id=6K2RM6wVqKu}
}
@misc{lu2023highly,
title={Highly Accurate Quantum Chemical Property Prediction with Uni-Mol+},
author={Shuqi Lu and Zhifeng Gao and Di He and Linfeng Zhang and Guolin Ke},
year={2023},
eprint={2303.16982},
archivePrefix={arXiv},
primaryClass={physics.chem-ph}
}
This project is licensed under the terms of the MIT license. See LICENSE for additional details.