-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.tex
200 lines (159 loc) · 5.84 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
\documentclass{beamer}
\mode<presentation>
{
\usetheme{default} % or try Darmstadt, Madrid, Warsaw, ...
\usecolortheme{default} % or try albatross, beaver, crane, ...
\usefonttheme{default} % or try serif, structurebold, ...
\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{caption}[numbered]
}
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{modiagram}
\usepackage{amsmath}
\usepackage{graphicx}
\title[Your Short Title]{IChO 2020}
\author{L.F. Pa\v{s}teka}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}{Schr\"{o}dingerova rovnica - voľná častica}
\begin{align*}
\hat{H} \Psi(x) = E \Psi(x) \\
-\frac{\hbar^2}{2m} \frac{d^2\Psi}{dx^2} = E \Psi \\
-\frac{\hbar^2}{2m} \nabla^2\Psi = E \Psi \\
\nabla^2\Psi = -\frac{2mE}{\hbar^2} \Psi \\
\Psi = A \cos(kx) + B \sin(kx)\\
k=\frac{\sqrt{2mE}}{\hbar}
\end{align*}
\end{frame}
\begin{frame}{Schr\"{o}dingerova rovnica - potenciálová jama}
\begin{align*}
\hat{H} \Psi = E \Psi \\
-\frac{\hbar^2}{2m} \nabla^2\Psi +\textcolor{red}{V\Psi} = E \Psi \\
V(x)=0 \quad pre \quad 0<x<L, \quad inak \quad V(x)=\infty
\end{align*}
V jame: $\Psi = A \cos(kx) + B \sin(kx)$
Mimo jamy: $\Psi = 0$
\end{frame}
\begin{frame}{Schr\"{o}dingerova rovnica - okrajové podmienky}
\begin{align*}
\Psi(0)=\Psi(L)=0 \\
\rightarrow A = 0 \\
\rightarrow k L=n\pi \\
k=\frac{n\pi}{L}=\frac{\sqrt{2mE}}{\hbar}\\
E=\frac{\hbar^2n^2\pi^2}{2mL^2}=\boxed{\frac{h^2n^2}{8mL}}
\end{align*}
\end{frame}
\begin{frame}{Úlohy - potenciálová jama}
\textbf{18.1}
\begin{align*}
E_{kv}=\frac{h^2}{8mL^2}=\frac{6.626^2}{8 \times 9.1094 \times 8^2 \times 1.4^2} 10^{-34-34+10+10+31}\\
E_{kv}=4.80 \times 10^{-20} J \\
E_n=E_{kv} n^2
\end{align*}
\textbf{18.2}
\begin{align*}
E_{tot} = 2(1+4+9+16) E_{kv} = 2.88 \times 10^{-18} J
\end{align*}
\textbf{18.3}
\begin{align*}
E_{gap} = (25-16) E_{kv} = 4.32 \times 10^{-19} J \\
c=\lambda\nu \quad E=h\nu \quad \rightarrow \quad \lambda=\frac{h c}{E_{gap}} = 460 \: nm
\end{align*}
\end{frame}
\begin{frame}{Úlohy - potenciálová jama}
\textbf{18.4}
\begin{align*}
A_{lattice} = (11 \text{\AA})^2 = 1.21 \times 10^{-18} \: m^2\\
A_{hex} = \frac{3\sqrt{3}}{2}L^2 = 5.09 \times 10^{-20} \: m^2\\
N_{hex} = \frac{A_{lattice}}{A_{hex}} \approx 24 \quad \rightarrow \quad 48 e^- \quad \rightarrow \quad 24 \: MO
\end{align*}
\includegraphics[width=3cm]{hex_lattice.png} 2 uhlíky na 1 šesťuholník
\end{frame}
\begin{frame}{Úlohy - potenciálová jama}
\textbf{18.5-7}
pozri excelovský hárok!
\begin{align*}
E=E_{kv}(n_1^2+n_2^2) \quad kde \quad E_{kv}=\frac{h^2}{8mL_1^2}=4.98 \times 10^{-20} J \\
E_{HOMO}=E_{kv}(1^2+6^2)=37 E_{kv} = 1.84 \times 10^{-18} J \\
E_{LUMO}=E_{kv}(2^2+6^2)=40 E_{kv} = 1.99 \times 10^{-18} J \\
E_{gap}=(40-37)E_{kv} = 1.5 \times 10^{-19} J
\end{align*}
\end{frame}
\begin{frame}{Úlohy - potenciálová jama}
\textbf{18.8-9}
podobne
\begin{align*}
E_{n_1n_2n_3}=E_{kv}(n_1^2+n_2^2+n_3^3) \quad kde \quad E_{kv}=\frac{h^2}{8mL^2} \\
E_{111}=3E_{kv} \quad 1\times deg.\\
E_{112}=E_{121}=E_{211}=6E_{kv} \quad 3\times deg.\\
E_{122}=E_{212}=E_{221}=9E_{kv} \quad 3\times deg.
\end{align*}
atď.
\end{frame}
\begin{frame}{Úlohy - harmonický oscilátor}
\textbf{19.1-3}
\begin{align*}
\mu = \frac{12 \times 16 }{12+16} = 6.86\: amu = 1.14 \times 10^{-26} \: kg\\
\nu = \frac{1}{2\pi}\sqrt{\frac{k}{\mu}} = 65 \: THz \\
\tilde{\nu}=\frac{1}{\lambda}=\frac{\nu}{c}=2170 \: cm^{-1} \\
E_{ZPV}=\frac{1}{2}h\nu=2.16\times 10^{-20} J = 3.1 kcal/mol
\end{align*}
\end{frame}
\begin{frame}{Úlohy - harmonický oscilátor}
\textbf{19.4}
\begin{align*}
\frac{\nu_2}{\nu_1} = \frac{\frac{1}{2\pi}\sqrt{\frac{k}{\mu_2}}}{\frac{1}{2\pi}\sqrt{\frac{k}{\mu_1}}} = \sqrt{\frac{\mu_1}{\mu_2}} \quad \rightarrow \quad \nu_2=\sqrt{\frac{\mu_1}{\mu_2}} \nu_1\\
\frac{\mu_1}{\mu_2}=\frac{\frac{12\times16}{12+16}}{\frac{13\times16}{13+16}} = \frac{12\times 29}{13\times 28} = 0.956 \quad \rightarrow \quad \sqrt{\frac{\mu_1}{\mu_2}} = 0.978\\
\tilde{\nu}_2=0.978\:\tilde{\nu}_1=0.978\times2170=2122 \: cm^{-1}\\
\end{align*}
\textbf{19.5}
\begin{align*}
\frac{\mu_1}{\mu_2}= \frac{16\times 29}{17\times 28} = 0.975 \quad \rightarrow \quad \sqrt{\frac{\mu_1}{\mu_2}} = 0.987\\
\tilde{\nu}_2=0.987\:\tilde{\nu}_1=0.987\times2170=2142 \: cm^{-1}\\
\end{align*}
\end{frame}
\begin{frame}{Úlohy - harmonický oscilátor}
\textbf{19.6}
\begin{align*}
\tilde{\nu}_{ZPV}=\frac{1}{2}(1649+3832+3942)=4712\: cm^{-1}\\
E_{ZPV}=hc_{ZPV}=9.36\times 10^{-20} \:J
\end{align*}
\textbf{19.7}
\begin{tabular}{ccccccccccc}
&$\nu_1$&$\nu_2$&$\nu_3$\\
$\times$&0&0&0&=&0 &+&$\tilde{\nu}_{ZPV}$&=&4712 cm$^{-1}$ \\
$\times$&1&0&0&=&1649&+&$\tilde{\nu}_{ZPV}$&=&6361 cm$^{-1}$ \\
$\times$&2&0&0&=&3298&+&$\tilde{\nu}_{ZPV}$&=&8010 cm$^{-1}$ \\
$\times$&0&1&0&=&3832&+&$\tilde{\nu}_{ZPV}$&=&8544 cm$^{-1}$ \\
$\times$&0&0&1&=&3943&+&$\tilde{\nu}_{ZPV}$&=&8655 cm$^{-1}$
\end{tabular}
\end{frame}
\begin{frame}{Úlohy - tuhý rotor}
\textbf{19.8}
prepokladáme, že $R$ nezávisí od izotopov
\begin{align*}
\Delta E=E_1-E_0=\frac{h^2}{8\pi^2I}\left[1(1+1)-0(0+1)\right]=\frac{h^2}{4\pi^2I}\\
\Delta E=h\nu=\frac{h^2}{4\pi^2\mu R^2} \quad \rightarrow \quad R=\sqrt{\frac{h}{4\pi^2\mu\nu}}=\frac{1}{2\pi}\sqrt{\frac{h}{\mu\nu}}=1.13\text{\AA}
\end{align*}
($\mu$ už máme z úlohy 19.1)
\\
\textbf{19.9}
\begin{align*}
\nu_{l+1}-\nu_{l}=\frac{h}{8\pi^2I}\left[(l+1)(l+2)-l(l+1)\right]=\frac{h}{4\pi^2I}(l+1)\\
\rightarrow \nu_{2-1}=2\times115=230\: GHz\\
\rightarrow \nu_{3-2}=3\times115=345\: GHz\\
\end{align*}
\end{frame}
\begin{frame}{Úlohy - tuhý rotor}
\textbf{19.10}
\begin{align*}
\frac{\nu_2}{\nu_1}=\frac{\frac{h}{8\pi^2\mu_2R^2}}{\frac{h}{8\pi^2\mu_1R^2}}=\frac{\mu_1}{\mu_2} \quad \rightarrow \quad \nu_2=\frac{\mu_1}{\mu_2} \nu_1\\
\frac{\mu_1}{\mu_2}=0.975 \quad (\text{poznáme z úlohy 19.5})\\
\nu_2=0.975\times115=112\: GHz
\end{align*}
\end{frame}
\end{document}