Skip to content

Commit b195961

Browse files
authored
Add files via upload
0 parents  commit b195961

File tree

3 files changed

+223
-0
lines changed

3 files changed

+223
-0
lines changed

hex_lattice.png

301 KB
Loading

main.tex

+200
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,200 @@
1+
\documentclass{beamer}
2+
3+
\mode<presentation>
4+
{
5+
\usetheme{default} % or try Darmstadt, Madrid, Warsaw, ...
6+
\usecolortheme{default} % or try albatross, beaver, crane, ...
7+
\usefonttheme{default} % or try serif, structurebold, ...
8+
\setbeamertemplate{navigation symbols}{}
9+
\setbeamertemplate{caption}[numbered]
10+
}
11+
12+
\usepackage[english]{babel}
13+
\usepackage[utf8]{inputenc}
14+
\usepackage[T1]{fontenc}
15+
\usepackage{modiagram}
16+
\usepackage{amsmath}
17+
\usepackage{graphicx}
18+
19+
\title[Your Short Title]{IChO 2020}
20+
\author{L.F. Pa\v{s}teka}
21+
22+
23+
\begin{document}
24+
25+
\begin{frame}
26+
\titlepage
27+
\end{frame}
28+
29+
30+
\begin{frame}{Schr\"{o}dingerova rovnica - voľná častica}
31+
\begin{align*}
32+
\hat{H} \Psi(x) = E \Psi(x) \\
33+
-\frac{\hbar^2}{2m} \frac{d^2\Psi}{dx^2} = E \Psi \\
34+
-\frac{\hbar^2}{2m} \nabla^2\Psi = E \Psi \\
35+
\nabla^2\Psi = -\frac{2mE}{\hbar^2} \Psi \\
36+
\Psi = A \cos(kx) + B \sin(kx)\\
37+
k=\frac{\sqrt{2mE}}{\hbar}
38+
\end{align*}
39+
\end{frame}
40+
41+
42+
\begin{frame}{Schr\"{o}dingerova rovnica - potenciálová jama}
43+
\begin{align*}
44+
\hat{H} \Psi = E \Psi \\
45+
-\frac{\hbar^2}{2m} \nabla^2\Psi +\textcolor{red}{V\Psi} = E \Psi \\
46+
V(x)=0 \quad pre \quad 0<x<L, \quad inak \quad V(x)=\infty
47+
\end{align*}
48+
49+
V jame: $\Psi = A \cos(kx) + B \sin(kx)$
50+
51+
Mimo jamy: $\Psi = 0$
52+
\end{frame}
53+
54+
55+
\begin{frame}{Schr\"{o}dingerova rovnica - okrajové podmienky}
56+
\begin{align*}
57+
\Psi(0)=\Psi(L)=0 \\
58+
\rightarrow A = 0 \\
59+
\rightarrow k L=n\pi \\
60+
k=\frac{n\pi}{L}=\frac{\sqrt{2mE}}{\hbar}\\
61+
E=\frac{\hbar^2n^2\pi^2}{2mL^2}=\boxed{\frac{h^2n^2}{8mL}}
62+
\end{align*}
63+
\end{frame}
64+
65+
66+
\begin{frame}{Úlohy - potenciálová jama}
67+
\textbf{18.1}
68+
\begin{align*}
69+
E_{kv}=\frac{h^2}{8mL^2}=\frac{6.626^2}{8 \times 9.1094 \times 8^2 \times 1.4^2} 10^{-34-34+10+10+31}\\
70+
E_{kv}=4.80 \times 10^{-20} J \\
71+
E_n=E_{kv} n^2
72+
\end{align*}
73+
74+
\textbf{18.2}
75+
\begin{align*}
76+
E_{tot} = 2(1+4+9+16) E_{kv} = 2.88 \times 10^{-18} J
77+
\end{align*}
78+
79+
\textbf{18.3}
80+
\begin{align*}
81+
E_{gap} = (25-16) E_{kv} = 4.32 \times 10^{-19} J \\
82+
c=\lambda\nu \quad E=h\nu \quad \rightarrow \quad \lambda=\frac{h c}{E_{gap}} = 460 \: nm
83+
\end{align*}
84+
\end{frame}
85+
86+
87+
\begin{frame}{Úlohy - potenciálová jama}
88+
\textbf{18.4}
89+
\begin{align*}
90+
A_{lattice} = (11 \text{\AA})^2 = 1.21 \times 10^{-18} \: m^2\\
91+
A_{hex} = \frac{3\sqrt{3}}{2}L^2 = 5.09 \times 10^{-20} \: m^2\\
92+
N_{hex} = \frac{A_{lattice}}{A_{hex}} \approx 24 \quad \rightarrow \quad 48 e^- \quad \rightarrow \quad 24 \: MO
93+
\end{align*}
94+
95+
\includegraphics[width=3cm]{hex_lattice.png} 2 uhlíky na 1 šesťuholník
96+
\end{frame}
97+
98+
\begin{frame}{Úlohy - potenciálová jama}
99+
\textbf{18.5-7}
100+
101+
pozri excelovský hárok!
102+
103+
\begin{align*}
104+
E=E_{kv}(n_1^2+n_2^2) \quad kde \quad E_{kv}=\frac{h^2}{8mL_1^2}=4.98 \times 10^{-20} J \\
105+
E_{HOMO}=E_{kv}(1^2+6^2)=37 E_{kv} = 1.84 \times 10^{-18} J \\
106+
E_{LUMO}=E_{kv}(2^2+6^2)=40 E_{kv} = 1.99 \times 10^{-18} J \\
107+
E_{gap}=(40-37)E_{kv} = 1.5 \times 10^{-19} J
108+
\end{align*}
109+
\end{frame}
110+
111+
112+
\begin{frame}{Úlohy - potenciálová jama}
113+
\textbf{18.8-9}
114+
115+
podobne
116+
\begin{align*}
117+
E_{n_1n_2n_3}=E_{kv}(n_1^2+n_2^2+n_3^3) \quad kde \quad E_{kv}=\frac{h^2}{8mL^2} \\
118+
E_{111}=3E_{kv} \quad 1\times deg.\\
119+
E_{112}=E_{121}=E_{211}=6E_{kv} \quad 3\times deg.\\
120+
E_{122}=E_{212}=E_{221}=9E_{kv} \quad 3\times deg.
121+
\end{align*}
122+
atď.
123+
\end{frame}
124+
125+
126+
\begin{frame}{Úlohy - harmonický oscilátor}
127+
\textbf{19.1-3}
128+
\begin{align*}
129+
\mu = \frac{12 \times 16 }{12+16} = 6.86\: amu = 1.14 \times 10^{-26} \: kg\\
130+
\nu = \frac{1}{2\pi}\sqrt{\frac{k}{\mu}} = 65 \: THz \\
131+
\tilde{\nu}=\frac{1}{\lambda}=\frac{\nu}{c}=2170 \: cm^{-1} \\
132+
E_{ZPV}=\frac{1}{2}h\nu=2.16\times 10^{-20} J = 3.1 kcal/mol
133+
\end{align*}
134+
\end{frame}
135+
136+
137+
\begin{frame}{Úlohy - harmonický oscilátor}
138+
\textbf{19.4}
139+
\begin{align*}
140+
\frac{\nu_2}{\nu_1} = \frac{\frac{1}{2\pi}\sqrt{\frac{k}{\mu_2}}}{\frac{1}{2\pi}\sqrt{\frac{k}{\mu_1}}} = \sqrt{\frac{\mu_1}{\mu_2}} \quad \rightarrow \quad \nu_2=\sqrt{\frac{\mu_1}{\mu_2}} \nu_1\\
141+
\frac{\mu_1}{\mu_2}=\frac{\frac{12\times16}{12+16}}{\frac{13\times16}{13+16}} = \frac{12\times 29}{13\times 28} = 0.956 \quad \rightarrow \quad \sqrt{\frac{\mu_1}{\mu_2}} = 0.978\\
142+
\tilde{\nu}_2=0.978\:\tilde{\nu}_1=0.978\times2170=2122 \: cm^{-1}\\
143+
\end{align*}
144+
145+
\textbf{19.5}
146+
\begin{align*}
147+
\frac{\mu_1}{\mu_2}= \frac{16\times 29}{17\times 28} = 0.975 \quad \rightarrow \quad \sqrt{\frac{\mu_1}{\mu_2}} = 0.987\\
148+
\tilde{\nu}_2=0.987\:\tilde{\nu}_1=0.987\times2170=2142 \: cm^{-1}\\
149+
\end{align*}
150+
\end{frame}
151+
152+
153+
\begin{frame}{Úlohy - harmonický oscilátor}
154+
\textbf{19.6}
155+
\begin{align*}
156+
\tilde{\nu}_{ZPV}=\frac{1}{2}(1649+3832+3942)=4712\: cm^{-1}\\
157+
E_{ZPV}=hc_{ZPV}=9.36\times 10^{-20} \:J
158+
\end{align*}
159+
160+
\textbf{19.7}
161+
162+
\begin{tabular}{ccccccccccc}
163+
&$\nu_1$&$\nu_2$&$\nu_3$\\
164+
$\times$&0&0&0&=&0 &+&$\tilde{\nu}_{ZPV}$&=&4712 cm$^{-1}$ \\
165+
$\times$&1&0&0&=&1649&+&$\tilde{\nu}_{ZPV}$&=&6361 cm$^{-1}$ \\
166+
$\times$&2&0&0&=&3298&+&$\tilde{\nu}_{ZPV}$&=&8010 cm$^{-1}$ \\
167+
$\times$&0&1&0&=&3832&+&$\tilde{\nu}_{ZPV}$&=&8544 cm$^{-1}$ \\
168+
$\times$&0&0&1&=&3943&+&$\tilde{\nu}_{ZPV}$&=&8655 cm$^{-1}$
169+
\end{tabular}
170+
\end{frame}
171+
172+
\begin{frame}{Úlohy - tuhý rotor}
173+
\textbf{19.8}
174+
175+
prepokladáme, že $R$ nezávisí od izotopov
176+
\begin{align*}
177+
\Delta E=E_1-E_0=\frac{h^2}{8\pi^2I}\left[1(1+1)-0(0+1)\right]=\frac{h^2}{4\pi^2I}\\
178+
\Delta E=h\nu=\frac{h^2}{4\pi^2\mu R^2} \quad \rightarrow \quad R=\sqrt{\frac{h}{4\pi^2\mu\nu}}=\frac{1}{2\pi}\sqrt{\frac{h}{\mu\nu}}=1.13\text{\AA}
179+
\end{align*}
180+
($\mu$ už máme z úlohy 19.1)
181+
\\
182+
\textbf{19.9}
183+
\begin{align*}
184+
\nu_{l+1}-\nu_{l}=\frac{h}{8\pi^2I}\left[(l+1)(l+2)-l(l+1)\right]=\frac{h}{4\pi^2I}(l+1)\\
185+
\rightarrow \nu_{2-1}=2\times115=230\: GHz\\
186+
\rightarrow \nu_{3-2}=3\times115=345\: GHz\\
187+
\end{align*}
188+
\end{frame}
189+
190+
191+
\begin{frame}{Úlohy - tuhý rotor}
192+
\textbf{19.10}
193+
\begin{align*}
194+
\frac{\nu_2}{\nu_1}=\frac{\frac{h}{8\pi^2\mu_2R^2}}{\frac{h}{8\pi^2\mu_1R^2}}=\frac{\mu_1}{\mu_2} \quad \rightarrow \quad \nu_2=\frac{\mu_1}{\mu_2} \nu_1\\
195+
\frac{\mu_1}{\mu_2}=0.975 \quad (\text{poznáme z úlohy 19.5})\\
196+
\nu_2=0.975\times115=112\: GHz
197+
\end{align*}
198+
\end{frame}
199+
200+
\end{document}

mini.tex

+23
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
\documentclass{article}
2+
\usepackage[utf8]{inputenc}
3+
4+
\title{microtest}
5+
\author{Lukáš F. Pašteka}
6+
\date{June 2020}
7+
8+
\begin{document}
9+
10+
\maketitle
11+
12+
\section{Preliminaries}
13+
14+
%comment
15+
\textit{Tri pokusy:}
16+
17+
Matematika: $\frac{\alpha^{123}}{\beta_{456}}$
18+
19+
Diakritika UTF8: Šášov
20+
21+
Dakritika LaTeX: \v{S}\'a\v{s}ov
22+
23+
\end{document}

0 commit comments

Comments
 (0)