|
| 1 | +\documentclass{beamer} |
| 2 | + |
| 3 | +\mode<presentation> |
| 4 | +{ |
| 5 | + \usetheme{default} % or try Darmstadt, Madrid, Warsaw, ... |
| 6 | + \usecolortheme{default} % or try albatross, beaver, crane, ... |
| 7 | + \usefonttheme{default} % or try serif, structurebold, ... |
| 8 | + \setbeamertemplate{navigation symbols}{} |
| 9 | + \setbeamertemplate{caption}[numbered] |
| 10 | +} |
| 11 | + |
| 12 | +\usepackage[english]{babel} |
| 13 | +\usepackage[utf8]{inputenc} |
| 14 | +\usepackage[T1]{fontenc} |
| 15 | +\usepackage{modiagram} |
| 16 | +\usepackage{amsmath} |
| 17 | +\usepackage{graphicx} |
| 18 | + |
| 19 | +\title[Your Short Title]{IChO 2020} |
| 20 | +\author{L.F. Pa\v{s}teka} |
| 21 | + |
| 22 | + |
| 23 | +\begin{document} |
| 24 | + |
| 25 | +\begin{frame} |
| 26 | + \titlepage |
| 27 | +\end{frame} |
| 28 | + |
| 29 | + |
| 30 | +\begin{frame}{Schr\"{o}dingerova rovnica - voľná častica} |
| 31 | +\begin{align*} |
| 32 | +\hat{H} \Psi(x) = E \Psi(x) \\ |
| 33 | +-\frac{\hbar^2}{2m} \frac{d^2\Psi}{dx^2} = E \Psi \\ |
| 34 | +-\frac{\hbar^2}{2m} \nabla^2\Psi = E \Psi \\ |
| 35 | +\nabla^2\Psi = -\frac{2mE}{\hbar^2} \Psi \\ |
| 36 | +\Psi = A \cos(kx) + B \sin(kx)\\ |
| 37 | +k=\frac{\sqrt{2mE}}{\hbar} |
| 38 | +\end{align*} |
| 39 | +\end{frame} |
| 40 | + |
| 41 | + |
| 42 | +\begin{frame}{Schr\"{o}dingerova rovnica - potenciálová jama} |
| 43 | +\begin{align*} |
| 44 | +\hat{H} \Psi = E \Psi \\ |
| 45 | +-\frac{\hbar^2}{2m} \nabla^2\Psi +\textcolor{red}{V\Psi} = E \Psi \\ |
| 46 | +V(x)=0 \quad pre \quad 0<x<L, \quad inak \quad V(x)=\infty |
| 47 | +\end{align*} |
| 48 | + |
| 49 | +V jame: $\Psi = A \cos(kx) + B \sin(kx)$ |
| 50 | + |
| 51 | +Mimo jamy: $\Psi = 0$ |
| 52 | +\end{frame} |
| 53 | + |
| 54 | + |
| 55 | +\begin{frame}{Schr\"{o}dingerova rovnica - okrajové podmienky} |
| 56 | +\begin{align*} |
| 57 | +\Psi(0)=\Psi(L)=0 \\ |
| 58 | +\rightarrow A = 0 \\ |
| 59 | +\rightarrow k L=n\pi \\ |
| 60 | +k=\frac{n\pi}{L}=\frac{\sqrt{2mE}}{\hbar}\\ |
| 61 | +E=\frac{\hbar^2n^2\pi^2}{2mL^2}=\boxed{\frac{h^2n^2}{8mL}} |
| 62 | +\end{align*} |
| 63 | +\end{frame} |
| 64 | + |
| 65 | + |
| 66 | +\begin{frame}{Úlohy - potenciálová jama} |
| 67 | +\textbf{18.1} |
| 68 | +\begin{align*} |
| 69 | +E_{kv}=\frac{h^2}{8mL^2}=\frac{6.626^2}{8 \times 9.1094 \times 8^2 \times 1.4^2} 10^{-34-34+10+10+31}\\ |
| 70 | +E_{kv}=4.80 \times 10^{-20} J \\ |
| 71 | +E_n=E_{kv} n^2 |
| 72 | +\end{align*} |
| 73 | + |
| 74 | +\textbf{18.2} |
| 75 | +\begin{align*} |
| 76 | +E_{tot} = 2(1+4+9+16) E_{kv} = 2.88 \times 10^{-18} J |
| 77 | +\end{align*} |
| 78 | + |
| 79 | +\textbf{18.3} |
| 80 | +\begin{align*} |
| 81 | +E_{gap} = (25-16) E_{kv} = 4.32 \times 10^{-19} J \\ |
| 82 | +c=\lambda\nu \quad E=h\nu \quad \rightarrow \quad \lambda=\frac{h c}{E_{gap}} = 460 \: nm |
| 83 | +\end{align*} |
| 84 | +\end{frame} |
| 85 | + |
| 86 | + |
| 87 | +\begin{frame}{Úlohy - potenciálová jama} |
| 88 | +\textbf{18.4} |
| 89 | +\begin{align*} |
| 90 | +A_{lattice} = (11 \text{\AA})^2 = 1.21 \times 10^{-18} \: m^2\\ |
| 91 | +A_{hex} = \frac{3\sqrt{3}}{2}L^2 = 5.09 \times 10^{-20} \: m^2\\ |
| 92 | +N_{hex} = \frac{A_{lattice}}{A_{hex}} \approx 24 \quad \rightarrow \quad 48 e^- \quad \rightarrow \quad 24 \: MO |
| 93 | +\end{align*} |
| 94 | + |
| 95 | +\includegraphics[width=3cm]{hex_lattice.png} 2 uhlíky na 1 šesťuholník |
| 96 | +\end{frame} |
| 97 | + |
| 98 | +\begin{frame}{Úlohy - potenciálová jama} |
| 99 | +\textbf{18.5-7} |
| 100 | + |
| 101 | +pozri excelovský hárok! |
| 102 | + |
| 103 | +\begin{align*} |
| 104 | +E=E_{kv}(n_1^2+n_2^2) \quad kde \quad E_{kv}=\frac{h^2}{8mL_1^2}=4.98 \times 10^{-20} J \\ |
| 105 | +E_{HOMO}=E_{kv}(1^2+6^2)=37 E_{kv} = 1.84 \times 10^{-18} J \\ |
| 106 | +E_{LUMO}=E_{kv}(2^2+6^2)=40 E_{kv} = 1.99 \times 10^{-18} J \\ |
| 107 | +E_{gap}=(40-37)E_{kv} = 1.5 \times 10^{-19} J |
| 108 | +\end{align*} |
| 109 | +\end{frame} |
| 110 | + |
| 111 | + |
| 112 | +\begin{frame}{Úlohy - potenciálová jama} |
| 113 | +\textbf{18.8-9} |
| 114 | + |
| 115 | +podobne |
| 116 | +\begin{align*} |
| 117 | +E_{n_1n_2n_3}=E_{kv}(n_1^2+n_2^2+n_3^3) \quad kde \quad E_{kv}=\frac{h^2}{8mL^2} \\ |
| 118 | +E_{111}=3E_{kv} \quad 1\times deg.\\ |
| 119 | +E_{112}=E_{121}=E_{211}=6E_{kv} \quad 3\times deg.\\ |
| 120 | +E_{122}=E_{212}=E_{221}=9E_{kv} \quad 3\times deg. |
| 121 | +\end{align*} |
| 122 | +atď. |
| 123 | +\end{frame} |
| 124 | + |
| 125 | + |
| 126 | +\begin{frame}{Úlohy - harmonický oscilátor} |
| 127 | +\textbf{19.1-3} |
| 128 | +\begin{align*} |
| 129 | +\mu = \frac{12 \times 16 }{12+16} = 6.86\: amu = 1.14 \times 10^{-26} \: kg\\ |
| 130 | +\nu = \frac{1}{2\pi}\sqrt{\frac{k}{\mu}} = 65 \: THz \\ |
| 131 | +\tilde{\nu}=\frac{1}{\lambda}=\frac{\nu}{c}=2170 \: cm^{-1} \\ |
| 132 | +E_{ZPV}=\frac{1}{2}h\nu=2.16\times 10^{-20} J = 3.1 kcal/mol |
| 133 | +\end{align*} |
| 134 | +\end{frame} |
| 135 | + |
| 136 | + |
| 137 | +\begin{frame}{Úlohy - harmonický oscilátor} |
| 138 | +\textbf{19.4} |
| 139 | +\begin{align*} |
| 140 | +\frac{\nu_2}{\nu_1} = \frac{\frac{1}{2\pi}\sqrt{\frac{k}{\mu_2}}}{\frac{1}{2\pi}\sqrt{\frac{k}{\mu_1}}} = \sqrt{\frac{\mu_1}{\mu_2}} \quad \rightarrow \quad \nu_2=\sqrt{\frac{\mu_1}{\mu_2}} \nu_1\\ |
| 141 | +\frac{\mu_1}{\mu_2}=\frac{\frac{12\times16}{12+16}}{\frac{13\times16}{13+16}} = \frac{12\times 29}{13\times 28} = 0.956 \quad \rightarrow \quad \sqrt{\frac{\mu_1}{\mu_2}} = 0.978\\ |
| 142 | +\tilde{\nu}_2=0.978\:\tilde{\nu}_1=0.978\times2170=2122 \: cm^{-1}\\ |
| 143 | +\end{align*} |
| 144 | + |
| 145 | +\textbf{19.5} |
| 146 | +\begin{align*} |
| 147 | +\frac{\mu_1}{\mu_2}= \frac{16\times 29}{17\times 28} = 0.975 \quad \rightarrow \quad \sqrt{\frac{\mu_1}{\mu_2}} = 0.987\\ |
| 148 | +\tilde{\nu}_2=0.987\:\tilde{\nu}_1=0.987\times2170=2142 \: cm^{-1}\\ |
| 149 | +\end{align*} |
| 150 | +\end{frame} |
| 151 | + |
| 152 | + |
| 153 | +\begin{frame}{Úlohy - harmonický oscilátor} |
| 154 | +\textbf{19.6} |
| 155 | +\begin{align*} |
| 156 | +\tilde{\nu}_{ZPV}=\frac{1}{2}(1649+3832+3942)=4712\: cm^{-1}\\ |
| 157 | +E_{ZPV}=hc_{ZPV}=9.36\times 10^{-20} \:J |
| 158 | +\end{align*} |
| 159 | + |
| 160 | +\textbf{19.7} |
| 161 | + |
| 162 | +\begin{tabular}{ccccccccccc} |
| 163 | +&$\nu_1$&$\nu_2$&$\nu_3$\\ |
| 164 | +$\times$&0&0&0&=&0 &+&$\tilde{\nu}_{ZPV}$&=&4712 cm$^{-1}$ \\ |
| 165 | +$\times$&1&0&0&=&1649&+&$\tilde{\nu}_{ZPV}$&=&6361 cm$^{-1}$ \\ |
| 166 | +$\times$&2&0&0&=&3298&+&$\tilde{\nu}_{ZPV}$&=&8010 cm$^{-1}$ \\ |
| 167 | +$\times$&0&1&0&=&3832&+&$\tilde{\nu}_{ZPV}$&=&8544 cm$^{-1}$ \\ |
| 168 | +$\times$&0&0&1&=&3943&+&$\tilde{\nu}_{ZPV}$&=&8655 cm$^{-1}$ |
| 169 | +\end{tabular} |
| 170 | +\end{frame} |
| 171 | + |
| 172 | +\begin{frame}{Úlohy - tuhý rotor} |
| 173 | +\textbf{19.8} |
| 174 | + |
| 175 | +prepokladáme, že $R$ nezávisí od izotopov |
| 176 | +\begin{align*} |
| 177 | +\Delta E=E_1-E_0=\frac{h^2}{8\pi^2I}\left[1(1+1)-0(0+1)\right]=\frac{h^2}{4\pi^2I}\\ |
| 178 | +\Delta E=h\nu=\frac{h^2}{4\pi^2\mu R^2} \quad \rightarrow \quad R=\sqrt{\frac{h}{4\pi^2\mu\nu}}=\frac{1}{2\pi}\sqrt{\frac{h}{\mu\nu}}=1.13\text{\AA} |
| 179 | +\end{align*} |
| 180 | +($\mu$ už máme z úlohy 19.1) |
| 181 | +\\ |
| 182 | +\textbf{19.9} |
| 183 | +\begin{align*} |
| 184 | +\nu_{l+1}-\nu_{l}=\frac{h}{8\pi^2I}\left[(l+1)(l+2)-l(l+1)\right]=\frac{h}{4\pi^2I}(l+1)\\ |
| 185 | +\rightarrow \nu_{2-1}=2\times115=230\: GHz\\ |
| 186 | +\rightarrow \nu_{3-2}=3\times115=345\: GHz\\ |
| 187 | +\end{align*} |
| 188 | +\end{frame} |
| 189 | + |
| 190 | + |
| 191 | +\begin{frame}{Úlohy - tuhý rotor} |
| 192 | +\textbf{19.10} |
| 193 | +\begin{align*} |
| 194 | +\frac{\nu_2}{\nu_1}=\frac{\frac{h}{8\pi^2\mu_2R^2}}{\frac{h}{8\pi^2\mu_1R^2}}=\frac{\mu_1}{\mu_2} \quad \rightarrow \quad \nu_2=\frac{\mu_1}{\mu_2} \nu_1\\ |
| 195 | +\frac{\mu_1}{\mu_2}=0.975 \quad (\text{poznáme z úlohy 19.5})\\ |
| 196 | +\nu_2=0.975\times115=112\: GHz |
| 197 | +\end{align*} |
| 198 | +\end{frame} |
| 199 | + |
| 200 | + \end{document} |
0 commit comments