Two enclosures are separated by a membrane that allows diffusion according to Sieverts' law and chemical reactions, with no volumetric source present. Enclosure 2 has twice the volume of Enclosure 1.
This verification problem is taken from !cite.
Unlike the ver-1kc-1 case, which only considers tritium T$_2$, this setup describes a diffusion system in which tritium T$_2$, dihydrogen H$_2$ and HT are modeled across a one-dimensional domain split into two enclosures. The total system length is
The reaction between the species is described as follows
\begin{equation} \text{H}_2 + \text{T}_2 \leftrightarrow 2\text{HT} \end{equation}
The kinematic evolutions of the species are given by the following equations
\begin{equation} \frac{d C_{\text{HT}}}{dt} = 2K_1 C_{\text{H}2} C{\text{T}2} - K_2 C{\text{HT}}^2 \end{equation}
\begin{equation} \frac{d C_{\text{H}2}}{dt} = -K_1 C{\text{H}2} C{\text{T}2} + \frac{1}{2} K_2 C{\text{HT}}^2 \end{equation}
\begin{equation} \frac{d C_{\text{T}2}}{dt} = -K_1 c{\text{H}2} C{\text{T}2} + \frac{1}{2} K_2 C{\text{HT}}^2 \end{equation}
where
At equilibrium, the time derivatives are zero
\begin{equation} 2K_1 C_{\text{H}2} C{\text{T}2} - K_2 C{\text{HT}}^2 = 0 \end{equation}
From this, we can derive the same equilibrium condition as used in TMAP7:
\begin{equation} P_{\text{HT}} = \eta \sqrt{P_{\text{H}2} P{\text{T}_2}} \end{equation}
where the equilibrium constant
\begin{equation} \label{eq:eta} \eta = \sqrt{\frac{2K_1}{K_2}} \end{equation}
Similarly to TMAP7, the equilibrium constant
The diffusion process for each species in the two enclosures can be expressed by
\begin{equation} \frac{\partial C_1}{\partial t} = \nabla D \nabla C_1, \end{equation} and \begin{equation} \frac{\partial C_2}{\partial t} = \nabla D \nabla C_2, \end{equation}
where
The concentration in Enclosure 1 is related to the partial pressure and concentration in Enclosure 2 via the interface sorption law:
\begin{equation} C_1 = K P_2^n = K \left( C_2 RT \right)^n \end{equation}
where
We assume that
Thus, it is crucial to ensure that the chemical equilibrium between HT, T$2$ and H$2$ is achieved. This can be verified in both enclosures by examining the ratio between $P{\text{HT}}$ and $\sqrt{P{\text{H}2} P{\text{T}_2}}$, which must equal
The concentration ratios for T$_2$, H$_2$, and HT between enclosures 1 and 2, shown in [ver-1kc-2_concentration_ratio_T2_k10], [ver-1kc-2_concentration_ratio_H2_k10], and [ver-1kc-2_concentration_ratio_HT_k10], demonstrate that the results obtained with TMAP8 are consistent with the analytical results derived from the sorption law for
As shown in [ver-1kc-2_mass_conservation_k10], mass is conserved between the two enclosures over time. The variation in mass is only
!media comparison_ver-1kc-2.py
image_name=ver-1kc-2_comparison_time_k10.png
style=width:50%;margin-bottom:2%;margin-left:auto;margin-right:auto
id=ver-1kc-2_comparison_time_k10
caption=Evolution of species concentration over time governed by Sieverts' law with
!media comparison_ver-1kc-2.py
image_name=ver-1kc-2_equilibrium_constant_k10.png
style=width:50%;margin-bottom:2%;margin-left:auto;margin-right:auto
id=ver-1kc-2_equilibrium_constant_k10
caption=Equilibrium constant as a function of time for
!media comparison_ver-1kc-2.py
image_name=ver-1kc-2_concentration_ratio_T2_k10.png
style=width:50%;margin-bottom:2%;margin-left:auto;margin-right:auto
id=ver-1kc-2_concentration_ratio_T2_k10
caption=T$_2$ concentration ratio between enclosures 1 and 2 at the interface for
!media comparison_ver-1kc-2.py
image_name=ver-1kc-2_concentration_ratio_H2_k10.png
style=width:50%;margin-bottom:2%;margin-left:auto;margin-right:auto
id=ver-1kc-2_concentration_ratio_H2_k10
caption=H$_2$ concentration ratio between enclosures 1 and 2 at the interface for
!media comparison_ver-1kc-2.py
image_name=ver-1kc-2_concentration_ratio_HT_k10.png
style=width:50%;margin-bottom:2%;margin-left:auto;margin-right:auto
id=ver-1kc-2_concentration_ratio_HT_k10
caption=HT concentration ratio between enclosures 1 and 2 at the interface for
!media comparison_ver-1kc-2.py
image_name=ver-1kc-2_mass_conservation_k10.png
style=width:50%;margin-bottom:2%;margin-left:auto;margin-right:auto
id=ver-1kc-2_mass_conservation_k10
caption=Total mass conservation across both enclosures over time for
!style halign=left The input file for this case can be found at [/ver-1kc-2.i].
!bibtex bibliography