-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathholdoutCVKernRLS.py
executable file
·94 lines (79 loc) · 3.52 KB
/
holdoutCVKernRLS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
from regularizedKernLSTrain import *
from regularizedKernLSTest import *
from calcErr import *
def holdoutCVKernRLS(x, y, perc, nrip, kernel, lam_list, kerpar_list):
'''
Input:
xtr: the training examples
ytr: the training labels
kernel: the kernel function (see KernelMatrix documentation).
perc: percentage of the dataset to be used for validation, must be in range [1,100]
nrip: number of repetitions of the test for each couple of parameters
lam_list: list of regularization parameters
for example intlambda = np.array([5,2,1,0.7,0.5,0.3,0.2,0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001, 0.0005, 0.0002, 0.0001,0.00001,0.000001])
kerpar_list: list of kernel parameters
for example intkerpar = np.array([10,7,5,4,3,2.5,2.0,1.5,1.0,0.7,0.5,0.3,0.2,0.1, 0.05, 0.03,0.02, 0.01])
Returns:
l, s: the couple of lambda and kernel parameter that minimize the median of the validation error
vm, vs: median and variance of the validation error for each couple of parameters
tm, ts: median and variance of the error computed on the training set for each couple of parameters
Example of usage:
from regularizationNetworks import MixGauss
from regularizationNetworks import holdoutCVKernRLS
import matplotlib.pyplot as plt
import numpy as np
lam_list = np.array([5,2,1,0.7,0.5,0.3,0.2,0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001, 0.0005, 0.0002, 0.0001,0.00001,0.000001])
kerpar_list = np.array([10,7,5,4,3,2.5,2.0,1.5,1.0,0.7,0.5,0.3,0.2,0.1, 0.05, 0.03,0.02, 0.01])
xtr, ytr = MixGauss.mixgauss([[0;0],[1;1]],[0.5,0.25],100);
l, s, Vm, Vs, Tm, Ts = holdoutCVKernRLS.holdoutcvkernrls(xtr, ytr,'gaussian', 0.5, 5, lam_list, kerpar_list);
plt.plot(lam_list, vm, 'b')
plt.plot(lam_list, tm, 'r')
plt.show()
'''
if perc < 1 or perc > 100:
print("p should be a percentage value between 0 and 100.")
return -1
if isinstance(kerpar_list, int):
kerpar_list = np.array([kerpar_list])
else:
kerpar_list = np.array(kerpar_list)
nkerpar = kerpar_list.size
if isinstance(lam_list, int):
lam_list = np.array([lam_list])
else:
lam_list = np.array(lam_list)
nlambda = lam_list.size
n = x.shape[0]
ntr = int(np.ceil(n * (1 - float(perc) / 100)))
tm = np.zeros((nlambda, nkerpar))
ts = np.zeros((nlambda, nkerpar))
vm = np.zeros((nlambda, nkerpar))
vs = np.zeros((nlambda, nkerpar))
ym = float(y.max() + y.min()) / float(2)
il = 0
for l in lam_list:
iss = 0
for s in kerpar_list:
trerr = np.zeros((nrip, 1))
vlerr = np.zeros((nrip, 1))
for rip in range(nrip):
i = np.random.permutation(n)
xtr = x[i[:ntr]]
ytr = y[i[:ntr]]
xvl = x[i[ntr:]]
yvl = y[i[ntr:]]
w = regularizedKernLSTrain(xtr, ytr, kernel, s, l)
trerr[rip] = calcErr(regularizedKernLSTest(w, xtr, kernel, s, xtr), ytr, ym)
vlerr[rip] = calcErr(regularizedKernLSTest(w, xtr, kernel, s, xvl), yvl, ym)
#print('l: ', l, ' s: ', s, ' valErr: ', vlerr[rip], ' trErr: ', trerr[rip])
tm[il, iss] = np.median(trerr)
ts[il, iss] = np.std(trerr)
vm[il, iss] = np.median(vlerr)
vs[il, iss] = np.std(vlerr)
iss = iss + 1
il = il + 1
row, col = np.where(vm == np.amin(vm))
l = lam_list[row]
s = kerpar_list[col]
return [l, s, vm, vs, tm, ts]