forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 1
/
scaling.py
1016 lines (873 loc) · 35.6 KB
/
scaling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey, Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import random
from itertools import repeat
from typing import Optional, Tuple
import torch
import torch.backends.cudnn.rnn as rnn
import torch.nn as nn
from torch import _VF, Tensor
from icefall.utils import is_jit_tracing
def _ntuple(n):
def parse(x):
if isinstance(x, collections.Iterable):
return x
return tuple(repeat(x, n))
return parse
_single = _ntuple(1)
_pair = _ntuple(2)
class ActivationBalancerFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x: Tensor,
channel_dim: int,
min_positive: float, # e.g. 0.05
max_positive: float, # e.g. 0.95
max_factor: float, # e.g. 0.01
min_abs: float, # e.g. 0.2
max_abs: float, # e.g. 100.0
) -> Tensor:
if x.requires_grad:
if channel_dim < 0:
channel_dim += x.ndim
# sum_dims = [d for d in range(x.ndim) if d != channel_dim]
# The above line is not torch scriptable for torch 1.6.0
# torch.jit.frontend.NotSupportedError: comprehension ifs not supported yet: # noqa
sum_dims = []
for d in range(x.ndim):
if d != channel_dim:
sum_dims.append(d)
xgt0 = x > 0
proportion_positive = torch.mean(
xgt0.to(x.dtype), dim=sum_dims, keepdim=True
)
factor1 = (
(min_positive - proportion_positive).relu()
* (max_factor / min_positive)
if min_positive != 0.0
else 0.0
)
factor2 = (
(proportion_positive - max_positive).relu()
* (max_factor / (max_positive - 1.0))
if max_positive != 1.0
else 0.0
)
factor = factor1 + factor2
if isinstance(factor, float):
factor = torch.zeros_like(proportion_positive)
mean_abs = torch.mean(x.abs(), dim=sum_dims, keepdim=True)
below_threshold = mean_abs < min_abs
above_threshold = mean_abs > max_abs
ctx.save_for_backward(factor, xgt0, below_threshold, above_threshold)
ctx.max_factor = max_factor
ctx.sum_dims = sum_dims
return x
@staticmethod
def backward(
ctx, x_grad: Tensor
) -> Tuple[Tensor, None, None, None, None, None, None]:
factor, xgt0, below_threshold, above_threshold = ctx.saved_tensors
dtype = x_grad.dtype
scale_factor = (
(below_threshold.to(dtype) - above_threshold.to(dtype))
* (xgt0.to(dtype) - 0.5)
* (ctx.max_factor * 2.0)
)
neg_delta_grad = x_grad.abs() * (factor + scale_factor)
return x_grad - neg_delta_grad, None, None, None, None, None, None
class GradientFilterFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x: Tensor,
batch_dim: int, # e.g., 1
threshold: float, # e.g., 10.0
*params: Tensor, # module parameters
) -> Tuple[Tensor, ...]:
if x.requires_grad:
if batch_dim < 0:
batch_dim += x.ndim
ctx.batch_dim = batch_dim
ctx.threshold = threshold
return (x,) + params
@staticmethod
def backward(
ctx,
x_grad: Tensor,
*param_grads: Tensor,
) -> Tuple[Tensor, ...]:
eps = 1.0e-20
dim = ctx.batch_dim
norm_dims = [d for d in range(x_grad.ndim) if d != dim]
norm_of_batch = (x_grad**2).mean(dim=norm_dims, keepdim=True).sqrt()
median_norm = norm_of_batch.median()
cutoff = median_norm * ctx.threshold
inv_mask = (cutoff + norm_of_batch) / (cutoff + eps)
mask = 1.0 / (inv_mask + eps)
x_grad = x_grad * mask
avg_mask = 1.0 / (inv_mask.mean() + eps)
param_grads = [avg_mask * g for g in param_grads]
return (x_grad, None, None) + tuple(param_grads)
class GradientFilter(torch.nn.Module):
"""This is used to filter out elements that have extremely large gradients
in batch and the module parameters with soft masks.
Args:
batch_dim (int):
The batch dimension.
threshold (float):
For each element in batch, its gradient will be
filtered out if the gradient norm is larger than
`grad_norm_threshold * median`, where `median` is the median
value of gradient norms of all elememts in batch.
"""
def __init__(self, batch_dim: int = 1, threshold: float = 10.0):
super(GradientFilter, self).__init__()
self.batch_dim = batch_dim
self.threshold = threshold
def forward(self, x: Tensor, *params: Tensor) -> Tuple[Tensor, ...]:
if torch.jit.is_scripting() or is_jit_tracing():
return (x,) + params
else:
return GradientFilterFunction.apply(
x,
self.batch_dim,
self.threshold,
*params,
)
class BasicNorm(torch.nn.Module):
"""
This is intended to be a simpler, and hopefully cheaper, replacement for
LayerNorm. The observation this is based on, is that Transformer-type
networks, especially with pre-norm, sometimes seem to set one of the
feature dimensions to a large constant value (e.g. 50), which "defeats"
the LayerNorm because the output magnitude is then not strongly dependent
on the other (useful) features. Presumably the weight and bias of the
LayerNorm are required to allow it to do this.
So the idea is to introduce this large constant value as an explicit
parameter, that takes the role of the "eps" in LayerNorm, so the network
doesn't have to do this trick. We make the "eps" learnable.
Args:
num_channels: the number of channels, e.g. 512.
channel_dim: the axis/dimension corresponding to the channel,
interprted as an offset from the input's ndim if negative.
shis is NOT the num_channels; it should typically be one of
{-2, -1, 0, 1, 2, 3}.
eps: the initial "epsilon" that we add as ballast in:
scale = ((input_vec**2).mean() + epsilon)**-0.5
Note: our epsilon is actually large, but we keep the name
to indicate the connection with conventional LayerNorm.
learn_eps: if true, we learn epsilon; if false, we keep it
at the initial value.
"""
def __init__(
self,
num_channels: int,
channel_dim: int = -1, # CAUTION: see documentation.
eps: float = 0.25,
learn_eps: bool = True,
) -> None:
super(BasicNorm, self).__init__()
self.num_channels = num_channels
self.channel_dim = channel_dim
if learn_eps:
self.eps = nn.Parameter(torch.tensor(eps).log().detach())
else:
self.register_buffer("eps", torch.tensor(eps).log().detach())
def forward(self, x: Tensor) -> Tensor:
if not is_jit_tracing():
assert x.shape[self.channel_dim] == self.num_channels
scales = (
torch.mean(x**2, dim=self.channel_dim, keepdim=True) + self.eps.exp()
) ** -0.5
return x * scales
class ScaledLinear(nn.Linear):
"""
A modified version of nn.Linear where the parameters are scaled before
use, via:
weight = self.weight * self.weight_scale.exp()
bias = self.bias * self.bias_scale.exp()
Args:
Accepts the standard args and kwargs that nn.Linear accepts
e.g. in_features, out_features, bias=False.
initial_scale: you can override this if you want to increase
or decrease the initial magnitude of the module's output
(affects the initialization of weight_scale and bias_scale).
Another option, if you want to do something like this, is
to re-initialize the parameters.
initial_speed: this affects how fast the parameter will
learn near the start of training; you can set it to a
value less than one if you suspect that a module
is contributing to instability near the start of training.
Nnote: regardless of the use of this option, it's best to
use schedulers like Noam that have a warm-up period.
Alternatively you can set it to more than 1 if you want it to
initially train faster. Must be greater than 0.
"""
def __init__(
self,
*args,
initial_scale: float = 1.0,
initial_speed: float = 1.0,
**kwargs,
):
super(ScaledLinear, self).__init__(*args, **kwargs)
initial_scale = torch.tensor(initial_scale).log()
self.weight_scale = nn.Parameter(initial_scale.clone().detach())
if self.bias is not None:
self.bias_scale = nn.Parameter(initial_scale.clone().detach())
else:
self.register_parameter("bias_scale", None)
self._reset_parameters(
initial_speed
) # Overrides the reset_parameters in nn.Linear
def _reset_parameters(self, initial_speed: float):
std = 0.1 / initial_speed
a = (3**0.5) * std
nn.init.uniform_(self.weight, -a, a)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
fan_in = self.weight.shape[1] * self.weight[0][0].numel()
scale = fan_in**-0.5 # 1/sqrt(fan_in)
with torch.no_grad():
self.weight_scale += torch.tensor(scale / std).log()
def get_weight(self):
return self.weight * self.weight_scale.exp()
def get_bias(self):
if self.bias is None or self.bias_scale is None:
return None
else:
return self.bias * self.bias_scale.exp()
def forward(self, input: Tensor) -> Tensor:
return torch.nn.functional.linear(input, self.get_weight(), self.get_bias())
class ScaledConv1d(nn.Conv1d):
# See docs for ScaledLinear
def __init__(
self,
*args,
initial_scale: float = 1.0,
initial_speed: float = 1.0,
**kwargs,
):
super(ScaledConv1d, self).__init__(*args, **kwargs)
initial_scale = torch.tensor(initial_scale).log()
self.bias_scale: Optional[nn.Parameter] # for torchscript
self.weight_scale = nn.Parameter(initial_scale.clone().detach())
if self.bias is not None:
self.bias_scale = nn.Parameter(initial_scale.clone().detach())
else:
self.register_parameter("bias_scale", None)
self._reset_parameters(
initial_speed
) # Overrides the reset_parameters in base class
def _reset_parameters(self, initial_speed: float):
std = 0.1 / initial_speed
a = (3**0.5) * std
nn.init.uniform_(self.weight, -a, a)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
fan_in = self.weight.shape[1] * self.weight[0][0].numel()
scale = fan_in**-0.5 # 1/sqrt(fan_in)
with torch.no_grad():
self.weight_scale += torch.tensor(scale / std).log()
def get_weight(self):
return self.weight * self.weight_scale.exp()
def get_bias(self):
bias = self.bias
bias_scale = self.bias_scale
if bias is None or bias_scale is None:
return None
else:
return bias * bias_scale.exp()
def forward(self, input: Tensor) -> Tensor:
F = torch.nn.functional
if self.padding_mode != "zeros":
return F.conv1d(
F.pad(
input,
self._reversed_padding_repeated_twice,
mode=self.padding_mode,
),
self.get_weight(),
self.get_bias(),
self.stride,
(0,),
self.dilation,
self.groups,
)
return F.conv1d(
input,
self.get_weight(),
self.get_bias(),
self.stride,
self.padding,
self.dilation,
self.groups,
)
class ScaledConv2d(nn.Conv2d):
# See docs for ScaledLinear
def __init__(
self,
*args,
initial_scale: float = 1.0,
initial_speed: float = 1.0,
**kwargs,
):
super(ScaledConv2d, self).__init__(*args, **kwargs)
initial_scale = torch.tensor(initial_scale).log()
self.weight_scale = nn.Parameter(initial_scale.clone().detach())
if self.bias is not None:
self.bias_scale = nn.Parameter(initial_scale.clone().detach())
else:
self.register_parameter("bias_scale", None)
self._reset_parameters(
initial_speed
) # Overrides the reset_parameters in base class
def _reset_parameters(self, initial_speed: float):
std = 0.1 / initial_speed
a = (3**0.5) * std
nn.init.uniform_(self.weight, -a, a)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
fan_in = self.weight.shape[1] * self.weight[0][0].numel()
scale = fan_in**-0.5 # 1/sqrt(fan_in)
with torch.no_grad():
self.weight_scale += torch.tensor(scale / std).log()
def get_weight(self):
return self.weight * self.weight_scale.exp()
def get_bias(self):
# see https://github.com/pytorch/pytorch/issues/24135
bias = self.bias
bias_scale = self.bias_scale
if bias is None or bias_scale is None:
return None
else:
return bias * bias_scale.exp()
def _conv_forward(self, input, weight):
F = torch.nn.functional
if self.padding_mode != "zeros":
return F.conv2d(
F.pad(
input,
self._reversed_padding_repeated_twice,
mode=self.padding_mode,
),
weight,
self.get_bias(),
self.stride,
(0, 0),
self.dilation,
self.groups,
)
return F.conv2d(
input,
weight,
self.get_bias(),
self.stride,
self.padding,
self.dilation,
self.groups,
)
def forward(self, input: Tensor) -> Tensor:
return self._conv_forward(input, self.get_weight())
class ScaledLSTM(nn.LSTM):
# See docs for ScaledLinear.
# This class implements LSTM with scaling mechanism, using `torch._VF.lstm`
# Please refer to https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/rnn.py
def __init__(
self,
*args,
initial_scale: float = 1.0,
initial_speed: float = 1.0,
grad_norm_threshold: float = 10.0,
**kwargs,
):
if "bidirectional" in kwargs:
assert kwargs["bidirectional"] is False
super(ScaledLSTM, self).__init__(*args, **kwargs)
initial_scale = torch.tensor(initial_scale).log()
self._scales_names = []
self._scales = []
for name in self._flat_weights_names:
scale_name = name + "_scale"
self._scales_names.append(scale_name)
param = nn.Parameter(initial_scale.clone().detach())
setattr(self, scale_name, param)
self._scales.append(param)
self.grad_filter = GradientFilter(batch_dim=1, threshold=grad_norm_threshold)
self._reset_parameters(
initial_speed
) # Overrides the reset_parameters in base class
def _reset_parameters(self, initial_speed: float):
std = 0.1 / initial_speed
a = (3**0.5) * std
scale = self.hidden_size**-0.5
v = scale / std
for idx, name in enumerate(self._flat_weights_names):
if "weight" in name:
nn.init.uniform_(self._flat_weights[idx], -a, a)
with torch.no_grad():
self._scales[idx] += torch.tensor(v).log()
elif "bias" in name:
nn.init.constant_(self._flat_weights[idx], 0.0)
def _flatten_parameters(self, flat_weights) -> None:
"""Resets parameter data pointer so that they can use faster code paths.
Right now, this works only if the module is on the GPU and cuDNN is enabled.
Otherwise, it's a no-op.
This function is modified from https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/rnn.py # noqa
"""
# Short-circuits if _flat_weights is only partially instantiated
if len(flat_weights) != len(self._flat_weights_names):
return
for w in flat_weights:
if not isinstance(w, Tensor):
return
# Short-circuits if any tensor in flat_weights is not acceptable to cuDNN
# or the tensors in flat_weights are of different dtypes
first_fw = flat_weights[0]
dtype = first_fw.dtype
for fw in flat_weights:
if (
not isinstance(fw.data, Tensor)
or not (fw.data.dtype == dtype)
or not fw.data.is_cuda
or not torch.backends.cudnn.is_acceptable(fw.data)
):
return
# If any parameters alias, we fall back to the slower, copying code path. This is
# a sufficient check, because overlapping parameter buffers that don't completely
# alias would break the assumptions of the uniqueness check in
# Module.named_parameters().
unique_data_ptrs = set(p.data_ptr() for p in flat_weights)
if len(unique_data_ptrs) != len(flat_weights):
return
with torch.cuda.device_of(first_fw):
# Note: no_grad() is necessary since _cudnn_rnn_flatten_weight is
# an inplace operation on self._flat_weights
with torch.no_grad():
if torch._use_cudnn_rnn_flatten_weight():
num_weights = 4 if self.bias else 2
if self.proj_size > 0:
num_weights += 1
torch._cudnn_rnn_flatten_weight(
flat_weights,
num_weights,
self.input_size,
rnn.get_cudnn_mode(self.mode),
self.hidden_size,
self.proj_size,
self.num_layers,
self.batch_first,
bool(self.bidirectional),
)
def _get_flat_weights(self):
"""Get scaled weights, and resets their data pointer."""
flat_weights = []
for idx in range(len(self._flat_weights_names)):
flat_weights.append(self._flat_weights[idx] * self._scales[idx].exp())
self._flatten_parameters(flat_weights)
return flat_weights
def forward(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = None):
# This function is modified from https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/rnn.py # noqa
# The change for calling `_VF.lstm()` is:
# self._flat_weights -> self._get_flat_weights()
if hx is None:
h_zeros = torch.zeros(
self.num_layers,
input.size(1),
self.proj_size if self.proj_size > 0 else self.hidden_size,
dtype=input.dtype,
device=input.device,
)
c_zeros = torch.zeros(
self.num_layers,
input.size(1),
self.hidden_size,
dtype=input.dtype,
device=input.device,
)
hx = (h_zeros, c_zeros)
self.check_forward_args(input, hx, None)
flat_weights = self._get_flat_weights()
input, *flat_weights = self.grad_filter(input, *flat_weights)
result = _VF.lstm(
input,
hx,
flat_weights,
self.bias,
self.num_layers,
self.dropout,
self.training,
self.bidirectional,
self.batch_first,
)
output = result[0]
hidden = result[1:]
return output, hidden
class ActivationBalancer(torch.nn.Module):
"""
Modifies the backpropped derivatives of a function to try to encourage, for
each channel, that it is positive at least a proportion `threshold` of the
time. It does this by multiplying negative derivative values by up to
(1+max_factor), and positive derivative values by up to (1-max_factor),
interpolated from 1 at the threshold to those extremal values when none
of the inputs are positive.
Args:
channel_dim: the dimension/axis corresponding to the channel, e.g.
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
min_positive: the minimum, per channel, of the proportion of the time
that (x > 0), below which we start to modify the derivatives.
max_positive: the maximum, per channel, of the proportion of the time
that (x > 0), above which we start to modify the derivatives.
max_factor: the maximum factor by which we modify the derivatives for
either the sign constraint or the magnitude constraint;
e.g. with max_factor=0.02, the the derivatives would be multiplied by
values in the range [0.98..1.02].
min_abs: the minimum average-absolute-value per channel, which
we allow, before we start to modify the derivatives to prevent
this.
max_abs: the maximum average-absolute-value per channel, which
we allow, before we start to modify the derivatives to prevent
this.
balance_prob: the probability to apply the ActivationBalancer.
"""
def __init__(
self,
channel_dim: int,
min_positive: float = 0.05,
max_positive: float = 0.95,
max_factor: float = 0.01,
min_abs: float = 0.2,
max_abs: float = 100.0,
balance_prob: float = 0.25,
):
super(ActivationBalancer, self).__init__()
self.channel_dim = channel_dim
self.min_positive = min_positive
self.max_positive = max_positive
self.max_factor = max_factor
self.min_abs = min_abs
self.max_abs = max_abs
assert 0 < balance_prob <= 1, balance_prob
self.balance_prob = balance_prob
def forward(self, x: Tensor) -> Tensor:
if random.random() >= self.balance_prob:
return x
else:
return ActivationBalancerFunction.apply(
x,
self.channel_dim,
self.min_positive,
self.max_positive,
self.max_factor / self.balance_prob,
self.min_abs,
self.max_abs,
)
class DoubleSwishFunction(torch.autograd.Function):
"""
double_swish(x) = x * torch.sigmoid(x-1)
This is a definition, originally motivated by its close numerical
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
Memory-efficient derivative computation:
double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
Now, s'(x) = s(x) * (1-s(x)).
double_swish'(x) = x * s'(x) + s(x).
= x * s(x) * (1-s(x)) + s(x).
= double_swish(x) * (1-s(x)) + s(x)
... so we just need to remember s(x) but not x itself.
"""
@staticmethod
def forward(ctx, x: Tensor) -> Tensor:
x = x.detach()
s = torch.sigmoid(x - 1.0)
y = x * s
ctx.save_for_backward(s, y)
return y
@staticmethod
def backward(ctx, y_grad: Tensor) -> Tensor:
s, y = ctx.saved_tensors
return (y * (1 - s) + s) * y_grad
class DoubleSwish(torch.nn.Module):
def forward(self, x: Tensor) -> Tensor:
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
that we approximate closely with x * sigmoid(x-1).
"""
if torch.jit.is_scripting() or is_jit_tracing():
return x * torch.sigmoid(x - 1.0)
else:
return DoubleSwishFunction.apply(x)
class ScaledEmbedding(nn.Module):
r"""This is a modified version of nn.Embedding that introduces a learnable scale
on the parameters. Note: due to how we initialize it, it's best used with
schedulers like Noam that have a warmup period.
It is a simple lookup table that stores embeddings of a fixed dictionary and size.
This module is often used to store word embeddings and retrieve them using indices.
The input to the module is a list of indices, and the output is the corresponding
word embeddings.
Args:
num_embeddings (int): size of the dictionary of embeddings
embedding_dim (int): the size of each embedding vector
padding_idx (int, optional): If given, pads the output with the embedding vector at :attr:`padding_idx`
(initialized to zeros) whenever it encounters the index.
scale_grad_by_freq (boolean, optional): If given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default ``False``.
sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor.
See Notes for more details regarding sparse gradients.
initial_speed (float, optional): This affects how fast the parameter will
learn near the start of training; you can set it to a value less than
one if you suspect that a module is contributing to instability near
the start of training. Note: regardless of the use of this option,
it's best to use schedulers like Noam that have a warm-up period.
Alternatively you can set it to more than 1 if you want it to
initially train faster. Must be greater than 0.
Attributes:
weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
initialized from :math:`\mathcal{N}(0, 1)`
Shape:
- Input: :math:`(*)`, LongTensor of arbitrary shape containing the indices to extract
- Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`
.. note::
Keep in mind that only a limited number of optimizers support
sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),
:class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)
.. note::
With :attr:`padding_idx` set, the embedding vector at
:attr:`padding_idx` is initialized to all zeros. However, note that this
vector can be modified afterwards, e.g., using a customized
initialization method, and thus changing the vector used to pad the
output. The gradient for this vector from :class:`~torch.nn.Embedding`
is always zero.
Examples::
>>> # an Embedding module containing 10 tensors of size 3
>>> embedding = nn.Embedding(10, 3)
>>> # a batch of 2 samples of 4 indices each
>>> input = torch.LongTensor([[1,2,4,5],[4,3,2,9]])
>>> embedding(input)
tensor([[[-0.0251, -1.6902, 0.7172],
[-0.6431, 0.0748, 0.6969],
[ 1.4970, 1.3448, -0.9685],
[-0.3677, -2.7265, -0.1685]],
[[ 1.4970, 1.3448, -0.9685],
[ 0.4362, -0.4004, 0.9400],
[-0.6431, 0.0748, 0.6969],
[ 0.9124, -2.3616, 1.1151]]])
>>> # example with padding_idx
>>> embedding = nn.Embedding(10, 3, padding_idx=0)
>>> input = torch.LongTensor([[0,2,0,5]])
>>> embedding(input)
tensor([[[ 0.0000, 0.0000, 0.0000],
[ 0.1535, -2.0309, 0.9315],
[ 0.0000, 0.0000, 0.0000],
[-0.1655, 0.9897, 0.0635]]])
"""
__constants__ = [
"num_embeddings",
"embedding_dim",
"padding_idx",
"scale_grad_by_freq",
"sparse",
]
num_embeddings: int
embedding_dim: int
padding_idx: int
scale_grad_by_freq: bool
weight: Tensor
sparse: bool
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
scale_grad_by_freq: bool = False,
sparse: bool = False,
initial_speed: float = 1.0,
) -> None:
super(ScaledEmbedding, self).__init__()
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
if padding_idx is not None:
if padding_idx > 0:
assert (
padding_idx < self.num_embeddings
), "Padding_idx must be within num_embeddings"
elif padding_idx < 0:
assert (
padding_idx >= -self.num_embeddings
), "Padding_idx must be within num_embeddings"
padding_idx = self.num_embeddings + padding_idx
self.padding_idx = padding_idx
self.scale_grad_by_freq = scale_grad_by_freq
self.scale = nn.Parameter(torch.zeros(())) # see reset_parameters()
self.sparse = sparse
self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim))
self.reset_parameters(initial_speed)
def reset_parameters(self, initial_speed: float = 1.0) -> None:
std = 0.1 / initial_speed
nn.init.normal_(self.weight, std=std)
nn.init.constant_(self.scale, torch.tensor(1.0 / std).log())
if self.padding_idx is not None:
with torch.no_grad():
self.weight[self.padding_idx].fill_(0)
def forward(self, input: Tensor) -> Tensor:
F = torch.nn.functional
scale = self.scale.exp()
if input.numel() < self.num_embeddings:
return (
F.embedding(
input,
self.weight,
self.padding_idx,
None,
2.0, # None, 2.0 relate to normalization
self.scale_grad_by_freq,
self.sparse,
)
* scale
)
else:
return F.embedding(
input,
self.weight * scale,
self.padding_idx,
None,
2.0, # None, 2.0 relates to normalization
self.scale_grad_by_freq,
self.sparse,
)
def extra_repr(self) -> str:
# s = "{num_embeddings}, {embedding_dim}, scale={scale}"
s = "{num_embeddings}, {embedding_dim}"
if self.padding_idx is not None:
s += ", padding_idx={padding_idx}"
if self.scale_grad_by_freq is not False:
s += ", scale_grad_by_freq={scale_grad_by_freq}"
if self.sparse is not False:
s += ", sparse=True"
return s.format(**self.__dict__)
def _test_activation_balancer_sign():
probs = torch.arange(0, 1, 0.01)
N = 1000
x = 1.0 * (torch.rand(probs.numel(), N) < probs.unsqueeze(-1))
x = x.detach()
x.requires_grad = True
m = ActivationBalancer(
channel_dim=0,
min_positive=0.05,
max_positive=0.95,
max_factor=0.2,
min_abs=0.0,
)
y_grad = torch.sign(torch.randn(probs.numel(), N))
y = m(x)
y.backward(gradient=y_grad)
print("_test_activation_balancer_sign: x = ", x)
print("_test_activation_balancer_sign: y grad = ", y_grad)
print("_test_activation_balancer_sign: x grad = ", x.grad)
def _test_activation_balancer_magnitude():
magnitudes = torch.arange(0, 1, 0.01)
N = 1000
x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze(-1)
x = x.detach()
x.requires_grad = True
m = ActivationBalancer(
channel_dim=0,
min_positive=0.0,
max_positive=1.0,
max_factor=0.2,
min_abs=0.2,
max_abs=0.8,
)
y_grad = torch.sign(torch.randn(magnitudes.numel(), N))
y = m(x)
y.backward(gradient=y_grad)
print("_test_activation_balancer_magnitude: x = ", x)
print("_test_activation_balancer_magnitude: y grad = ", y_grad)
print("_test_activation_balancer_magnitude: x grad = ", x.grad)
def _test_basic_norm():
num_channels = 128
m = BasicNorm(num_channels=num_channels, channel_dim=1)
x = torch.randn(500, num_channels)
y = m(x)
assert y.shape == x.shape
x_rms = (x**2).mean().sqrt()
y_rms = (y**2).mean().sqrt()
print("x rms = ", x_rms)
print("y rms = ", y_rms)
assert y_rms < x_rms
assert y_rms > 0.5 * x_rms
def _test_double_swish_deriv():
x = torch.randn(10, 12, dtype=torch.double) * 0.5
x.requires_grad = True
m = DoubleSwish()
torch.autograd.gradcheck(m, x)
def _test_scaled_lstm():
N, L = 2, 30
dim_in, dim_hidden = 10, 20
m = ScaledLSTM(input_size=dim_in, hidden_size=dim_hidden, bias=True)
x = torch.randn(L, N, dim_in)
h0 = torch.randn(1, N, dim_hidden)
c0 = torch.randn(1, N, dim_hidden)
y, (h, c) = m(x, (h0, c0))
assert y.shape == (L, N, dim_hidden)
assert h.shape == (1, N, dim_hidden)
assert c.shape == (1, N, dim_hidden)
def _test_grad_filter():
threshold = 50.0
time, batch, channel = 200, 5, 128
grad_filter = GradientFilter(batch_dim=1, threshold=threshold)
for i in range(2):
x = torch.randn(time, batch, channel, requires_grad=True)
w = nn.Parameter(torch.ones(5))
b = nn.Parameter(torch.zeros(5))
x_out, w_out, b_out = grad_filter(x, w, b)
w_out_grad = torch.randn_like(w)
b_out_grad = torch.randn_like(b)
x_out_grad = torch.rand_like(x)
if i % 2 == 1:
# The gradient norm of the first element must be larger than
# `threshold * median`, where `median` is the median value
# of gradient norms of all elements in batch.
x_out_grad[:, 0, :] = torch.full((time, channel), threshold)
torch.autograd.backward(
[x_out, w_out, b_out], [x_out_grad, w_out_grad, b_out_grad]
)
print(
"_test_grad_filter: for gradient norms, the first element > median *"
" threshold ", # noqa
i % 2 == 1,
)
print(
"_test_grad_filter: x_out_grad norm = ",
(x_out_grad**2).mean(dim=(0, 2)).sqrt(),
)
print(