You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
In the train_lcm_distill_sd_wds.py
# 20.4.6. Sample a random guidance scale w from U[w_min, w_max] and embed it
w = (args.w_max - args.w_min) * torch.rand((bsz,)) + args.w_min
w_embedding = guidance_scale_embedding(w, embedding_dim=args.unet_time_cond_proj_dim)
w = w.reshape(bsz, 1, 1, 1)
# Move to U-Net device and dtype
w = w.to(device=latents.device, dtype=latents.dtype)
w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype)
train_lcm_distill_sdxl_wds.py :
w = (args.w_max - args.w_min) * torch.rand((bsz,)) + args.w_min
w = w.reshape(bsz, 1, 1, 1)
w = w.to(device=latents.device, dtype=latents.dtype)
Any reason for this? The code for XL model does not work without it (it defines
noise_pred = unet(
noisy_model_input,
start_timesteps,
timestep_cond=None,
encoder_hidden_states=prompt_embeds.float(),
added_cond_kwargs=encoded_text,
).sample
The timestep_cond is None, although the "unet_time_cond_proj_dim" is still required as raised in the other issue.
The text was updated successfully, but these errors were encountered:
In the train_lcm_distill_sd_wds.py
# 20.4.6. Sample a random guidance scale w from U[w_min, w_max] and embed it
w = (args.w_max - args.w_min) * torch.rand((bsz,)) + args.w_min
w_embedding = guidance_scale_embedding(w, embedding_dim=args.unet_time_cond_proj_dim)
w = w.reshape(bsz, 1, 1, 1)
# Move to U-Net device and dtype
w = w.to(device=latents.device, dtype=latents.dtype)
w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype)
train_lcm_distill_sdxl_wds.py :
w = (args.w_max - args.w_min) * torch.rand((bsz,)) + args.w_min
w = w.reshape(bsz, 1, 1, 1)
w = w.to(device=latents.device, dtype=latents.dtype)
Any reason for this? The code for XL model does not work without it (it defines
noise_pred = unet(
noisy_model_input,
start_timesteps,
timestep_cond=None,
encoder_hidden_states=prompt_embeds.float(),
added_cond_kwargs=encoded_text,
).sample
The timestep_cond is None, although the "unet_time_cond_proj_dim" is still required as raised in the other issue.
The text was updated successfully, but these errors were encountered: