-
Notifications
You must be signed in to change notification settings - Fork 135
/
Copy pathemotions.cpp
171 lines (142 loc) · 5.65 KB
/
emotions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
// Includes common necessary includes for development using depthai library
#include "depthai/depthai.hpp"
#include "xtensor/xsort.hpp"
class Face2ImageManipConfig : public dai::NodeCRTP<dai::node::ThreadedHostNode, Face2ImageManipConfig> {
public:
Input inputDetections = dai::Node::Input{*this, {}};
Output outputManipulators = dai::Node::Output{*this, {}};
void run() override {
while(isRunning()) {
std::shared_ptr<dai::ImgDetections> inDet;
inDet = inputDetections.get<dai::ImgDetections>();
if(!inDet)
{
continue;
}
for(auto& detection : inDet->detections) {
std::shared_ptr<dai::ImageManipConfig> manipulator = std::make_shared<dai::ImageManipConfig>();
manipulator->setCropRect(detection.xmin,
detection.ymin,
detection.xmax,
detection.ymax);
manipulator->setResize(64,64);
outputManipulators.send(manipulator);
}
}
}
};
std::array<const char* const,5> emotions = {"neutral", "happy", "sad", "surprise", "anger"};
void displayFrame(cv::Mat& frame, std::vector<dai::ImgDetection>& detections, std::vector<xt::xarray<float>>& resultLayers)
{
auto color = cv::Scalar(255, 0, 0);
for(int i = 0; i < detections.size(); i++) {
auto& detection = detections[i];
int x1 = detection.xmin * frame.cols;
int y1 = detection.ymin * frame.rows;
int x2 = detection.xmax * frame.cols;
int y2 = detection.ymax * frame.rows;
std::stringstream confStr;
if(i < resultLayers.size()) {
auto emotionIndex = xt::argmax(resultLayers[i])(0);
if(emotionIndex < emotions.size()) {
confStr << emotions[emotionIndex];
} else {
confStr << "Err index: " << emotionIndex;
}
} else {
confStr << "NA";
}
cv::putText(frame, confStr.str(), cv::Point(x1 + 10, y1 + 40), cv::FONT_HERSHEY_TRIPLEX, 0.5, color);
cv::rectangle(frame, cv::Rect(cv::Point(x1, y1), cv::Point(x2, y2)), color, cv::FONT_HERSHEY_SIMPLEX);
}
cv::imshow("video", frame);
}
int main(int argc, char** argv) {
std::string nnPath;
std::string nnEmoPath;
if(argc > 2) {
nnPath = std::string(argv[1]);
nnEmoPath = std::string(argv[2]);
} else {
std::cout << "call with arguments: {detection blob} {emotion blob}" << std::endl;
return 1;
}
// Create pipeline
auto device = std::make_shared<dai::Device>(dai::OpenVINO::VERSION_UNIVERSAL, dai::UsbSpeed::HIGH);
dai::Pipeline pipeline(device);
// Define source and output
auto camRgb = pipeline.create<dai::node::ColorCamera>();
auto nn = pipeline.create<dai::node::NeuralNetwork>();
auto nnEmo = pipeline.create<dai::node::NeuralNetwork>();
auto det = pipeline.create<dai::node::DetectionParser>();
auto manipConf = pipeline.create<Face2ImageManipConfig>();
auto manip = pipeline.create<dai::node::ImageManip>();
// Camera props
camRgb->setBoardSocket(dai::CameraBoardSocket::CAM_A);
camRgb->setResolution(dai::ColorCameraProperties::SensorResolution::THE_1080_P);
camRgb->setPreviewSize(300, 300);
camRgb->setInterleaved(false);
// Face detection NN props
nn->setNumInferenceThreads(2);
nn->input.setBlocking(false);
dai::OpenVINO::Blob blob1(nnPath);
nn->setBlob(blob1);
// Face detection NN parser props
det->setBlob(blob1);
det->setNNFamily(DetectionNetworkType::MOBILENET);
det->setConfidenceThreshold(0.5);
// Emotion detection NN props
nnEmo->setNumInferenceThreads(2);
nnEmo->input.setBlocking(false);
dai::OpenVINO::Blob blob2(nnEmoPath);
nnEmo->setBlob(blob2);
// ImageManip props
manip->initialConfig.setResize(64,64);
// Linking
/*
rgb -> nn -> det -> manipConf -> manip -> nnEmo
--------------------------->
*/
camRgb->preview.link(nn->input);
nn->out.link(det->input);
det->out.link(manipConf->inputDetections);
manipConf->outputManipulators.link(manip->inputConfig);
camRgb->preview.link(manip->inputImage);
manip->out.link(nnEmo->input);
auto outPassthrough = nn->passthrough.createOutputQueue();
auto outDet = det->out.createOutputQueue();
auto outNNEmo = nnEmo->out.createOutputQueue();
pipeline.start();
while(pipeline.isRunning()) {
std::shared_ptr<dai::ImgFrame> inRgb;
std::shared_ptr<dai::ImgDetections> inDet;
std::vector<std::shared_ptr<dai::NNData>> inNNEmos;
inRgb = outPassthrough->get<dai::ImgFrame>();
inDet = outDet->get<dai::ImgDetections>();
inNNEmos = outNNEmo->getAll<dai::NNData>();
cv::Mat frame;
std::vector<dai::ImgDetection> detections;
std::vector<xt::xarray<float>> resultLayers;
if(inRgb) {
frame = inRgb->getCvFrame();
}
if(inDet) {
detections = inDet->detections;
}
for(auto& inNN : inNNEmos) {
if(inNN && !inNN->tensors.empty()) {
resultLayers.push_back(inNN->getTensor<float>(inNN->tensors.back().name, false));
} else {
resultLayers.push_back({});
}
}
if(!frame.empty()) {
displayFrame(frame, detections, resultLayers);
}
int key = cv::waitKey(1);
if(key == 'q' || key == 'Q') {
return 0;
}
}
return 0;
}