-
Notifications
You must be signed in to change notification settings - Fork 4
Open
Description
Hi, I am new to kfp. I am using this package to run the vertex pipeline locally for a quick local test and running into OSError: [Errno 30] Read-only file system: '/s3'
whenever I used one of the parameters as Output[Dataset] type from kfp.v2.dsl.
Python version: 3.8.13
kfp version: 1.8.13
Below is the complete error message:
ERROR:root:Traceback (most recent call last):
File "opt/anaconda3/envs/test/lib/python3.8/runpy.py", line 194, in _run_module_as_main
return _run_code(code, main_globals, None,
File "opt/anaconda3/envs/test/lib/python3.8/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "opt/anaconda3/envs/test/lib/python3.8/site-packages/kfp/v2/components/executor_main.py", line 104, in <module>
executor_main()
File "opt/anaconda3/envs/test/lib/python3.8/site-packages/kfp/v2/components/executor_main.py", line 97, in executor_main
executor = component_executor.Executor(
File "opt/anaconda3/envs/test/lib/python3.8/site-packages/kfp/v2/components/executor.py", line 46, in __init__
self._output_artifacts[name] = self._make_output_artifact(
File "opt/anaconda3/envs/test/lib/python3.8/site-packages/kfp/v2/components/executor.py", line 61, in _make_output_artifact
os.makedirs(os.path.dirname(artifact.path), exist_ok=True)
File "opt/anaconda3/envs/test/lib/python3.8/os.py", line 213, in makedirs
makedirs(head, exist_ok=exist_ok)
File "opt/anaconda3/envs/test/lib/python3.8/os.py", line 213, in makedirs
makedirs(head, exist_ok=exist_ok)
File "opt/anaconda3/envs/test/lib/python3.8/os.py", line 213, in makedirs
makedirs(head, exist_ok=exist_ok)
[Previous line repeated 4 more times]
File "opt/anaconda3/envs/test/lib/python3.8/os.py", line 223, in makedirs
mkdir(name, mode)
OSError: [Errno 30] Read-only file system: '/s3'
ERROR:root:['sh', '-c', '\n\nif ! [ -x "$(command -v pip)" ]; then\n python3 -m ensurepip || python3 -m ensurepip --user || apt-get install python3-pip\nfi\n\nPIP_DISABLE_PIP_VERSION_CHECK=1 python3 -m pip install --quiet --no-warn-script-location \'pandas\' \'kfp==1.8.13\' && "$0" "$@"\n', 'sh', '-ec', 'program_path=$(mktemp -d)\nprintf "%s" "$0" > "$program_path/ephemeral_component.py"\npython3 -m kfp.v2.components.executor_main --component_module_path "$program_path/ephemeral_component.py" "$@"\n', '\nimport kfp\nfrom kfp.v2 import dsl\nfrom kfp.v2.dsl import *\nfrom typing import *\n\ndef build_input_dataset(\n output_data: Output[Dataset]):\n """Generates iris dataset for training"""\n import pandas as pd\n data = pd.DataFrame({\n "calories": [420, 380, 390],\n "duration": [50, 40, 45]\n })\n\n # Write the dataset to GCS location as Output that will be Input to the next step\n data.to_csv(output_data.path)\n\n', '--executor_input', '{\n "inputs": {},\n "outputs": {\n "artifacts": {\n "output_data": {\n "artifacts": [\n {\n "type": {\n "schemaTitle": "system.Dataset",\n "schemaVersion": "0.0.1"\n },\n "uri": "s3://var/folders/m9/pt1xjxh10c7__vy9tf_gygw00000gn/T/default-pipeline-template_20230103222819/build-input-dataset/output_data",\n "metadata": {}\n }\n ]\n }\n },\n "outputFile": "/var/folders/m9/pt1xjxh10c7__vy9tf_gygw00000gn/T/default-pipeline-template_20230103222819/build-input-dataset/output_metadata.json"\n }\n}', '--function_to_execute', 'build_input_dataset']
Here is the code that produces the error:
from kfp.v2 import dsl
from kfp.v2.dsl import Dataset, Output, component
from kfp_local import LocalClient
@component(
packages_to_install=["pandas"],
base_image="python:3.8",
)
def build_input_dataset(
output_data: Output[Dataset]):
"""Generates iris dataset for training"""
import pandas as pd
data = pd.DataFrame({
"calories": [420, 380, 390],
"duration": [50, 40, 45]
})
# Write the dataset to GCS location as Output that will be Input to the next step
data.to_csv(output_data.path)
@dsl.pipeline(name='default-pipeline-template')
def pipeline():
"""DAG that defines the kubeflow pipeline workflow"""
dataset_create_op = build_input_dataset()
local_client = LocalClient()
result = local_client.create_run_from_pipeline_func(
pipeline,
arguments={},
execution_mode=LocalClient.ExecutionMode("local"),
)
if result.success:
print("Local run successfully")
Do you have any insights on how to resolve this issue?
Thanks in advance. Please let me know if further information is required.
Metadata
Metadata
Assignees
Labels
No labels