-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·211 lines (173 loc) · 7.09 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
'''
This is the ECAPA-TDNN model.
This model is modified and combined based on the following three projects:
1. https://github.com/clovaai/voxceleb_trainer/issues/86
2. https://github.com/lawlict/ECAPA-TDNN/blob/master/ecapa_tdnn.py
3. https://github.com/speechbrain/speechbrain/blob/96077e9a1afff89d3f5ff47cab4bca0202770e4f/speechbrain/lobes/models/ECAPA_TDNN.py
'''
import math, torch, torchaudio, os
try:
import torch_musa
if os.getenv('DEVICE', None):
DEVICE = os.environ['DEVICE']
except ImportError:
if torch.cuda.is_available():
DEVICE = 'cuda'
else:
DEVICE = 'cpu'
print("can not find torch_musa")
import torch.nn as nn
import torch.nn.functional as F
class SEModule(nn.Module):
def __init__(self, channels, bottleneck=128):
super(SEModule, self).__init__()
self.se = nn.Sequential(
nn.AdaptiveAvgPool1d(1),
nn.Conv1d(channels, bottleneck, kernel_size=1, padding=0),
nn.ReLU(),
# nn.BatchNorm1d(bottleneck), # I remove this layer
nn.Conv1d(bottleneck, channels, kernel_size=1, padding=0),
nn.Sigmoid(),
)
def forward(self, input):
x = self.se(input)
return input * x
class Bottle2neck(nn.Module):
def __init__(self, inplanes, planes, kernel_size=None, dilation=None, scale = 8):
super(Bottle2neck, self).__init__()
width = int(math.floor(planes / scale))
self.conv1 = nn.Conv1d(inplanes, width*scale, kernel_size=1)
self.bn1 = nn.BatchNorm1d(width*scale)
self.nums = scale -1
convs = []
bns = []
num_pad = math.floor(kernel_size/2)*dilation
for i in range(self.nums):
convs.append(nn.Conv1d(width, width, kernel_size=kernel_size, dilation=dilation, padding=num_pad))
bns.append(nn.BatchNorm1d(width))
self.convs = nn.ModuleList(convs)
self.bns = nn.ModuleList(bns)
self.conv3 = nn.Conv1d(width*scale, planes, kernel_size=1)
self.bn3 = nn.BatchNorm1d(planes)
self.relu = nn.ReLU()
self.width = width
self.se = SEModule(planes)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.relu(out)
out = self.bn1(out)
spx = torch.split(out, self.width, 1)
for i in range(self.nums):
if i==0:
sp = spx[i]
else:
sp = sp + spx[i]
sp = self.convs[i](sp)
sp = self.relu(sp)
sp = self.bns[i](sp)
if i==0:
out = sp
else:
out = torch.cat((out, sp), 1)
out = torch.cat((out, spx[self.nums]),1)
out = self.conv3(out)
out = self.relu(out)
out = self.bn3(out)
out = self.se(out)
out += residual
return out
class PreEmphasis(torch.nn.Module):
def __init__(self, coef: float = 0.97):
super().__init__()
self.coef = coef
self.register_buffer(
'flipped_filter', torch.FloatTensor([-self.coef, 1.]).unsqueeze(0).unsqueeze(0)
)
def forward(self, input: torch.tensor) -> torch.tensor:
input = input.unsqueeze(1)
input = F.pad(input, (1, 0), 'reflect')
return F.conv1d(input, self.flipped_filter).squeeze(1)
class FbankAug(nn.Module):
def __init__(self, freq_mask_width = (0, 8), time_mask_width = (0, 10)):
self.time_mask_width = time_mask_width
self.freq_mask_width = freq_mask_width
super().__init__()
def mask_along_axis(self, x, dim):
original_size = x.shape
batch, fea, time = x.shape
if dim == 1:
D = fea
width_range = self.freq_mask_width
else:
D = time
width_range = self.time_mask_width
mask_len = torch.randint(width_range[0], width_range[1], (batch, 1), device=x.device).unsqueeze(2)
mask_pos = torch.randint(0, max(1, D - mask_len.max()), (batch, 1), device=x.device).unsqueeze(2)
arange = torch.arange(D, device=x.device).view(1, 1, -1)
mask = (mask_pos <= arange) * (arange < (mask_pos + mask_len))
mask = mask.any(dim=1)
if dim == 1:
mask = mask.unsqueeze(2)
else:
mask = mask.unsqueeze(1)
x = x.masked_fill_(mask, 0.0)
return x.view(*original_size)
def forward(self, x):
x = self.mask_along_axis(x, dim=2)
x = self.mask_along_axis(x, dim=1)
return x
class ECAPA_TDNN(nn.Module):
def __init__(self, C):
super(ECAPA_TDNN, self).__init__()
self.torchfbank = torch.nn.Sequential(
PreEmphasis(),
torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_fft=512, win_length=400, hop_length=160, \
f_min = 20, f_max = 7600, window_fn=torch.hamming_window, n_mels=80),
)
self.specaug = FbankAug() # Spec augmentation
self.conv1 = nn.Conv1d(80, C, kernel_size=5, stride=1, padding=2)
self.relu = nn.ReLU()
self.bn1 = nn.BatchNorm1d(C)
self.layer1 = Bottle2neck(C, C, kernel_size=3, dilation=2, scale=8)
self.layer2 = Bottle2neck(C, C, kernel_size=3, dilation=3, scale=8)
self.layer3 = Bottle2neck(C, C, kernel_size=3, dilation=4, scale=8)
# I fixed the shape of the output from MFA layer, that is close to the setting from ECAPA paper.
self.layer4 = nn.Conv1d(3*C, 1536, kernel_size=1)
self.attention = nn.Sequential(
nn.Conv1d(4608, 256, kernel_size=1),
nn.ReLU(),
nn.BatchNorm1d(256),
nn.Tanh(), # I add this layer
nn.Conv1d(256, 1536, kernel_size=1),
nn.Softmax(dim=2),
)
self.bn5 = nn.BatchNorm1d(3072)
self.fc6 = nn.Linear(3072, 192)
self.bn6 = nn.BatchNorm1d(192)
def forward(self, x, aug):
with torch.no_grad():
x = self.torchfbank(x)+1e-6
x = x.log()
x = x - torch.mean(x, dim=-1, keepdim=True)
if aug == True:
x = self.specaug(x)
x = self.conv1(x)
x = self.relu(x)
x = self.bn1(x)
x1 = self.layer1(x)
x2 = self.layer2(x+x1)
x3 = self.layer3(x+x1+x2)
x = self.layer4(torch.cat((x1,x2,x3),dim=1))
x = self.relu(x)
t = x.size()[-1]
x_tmp = torch.var(x.to('cpu'),dim=2,keepdim=True).to(DEVICE)
global_x = torch.cat((x,torch.mean(x,dim=2,keepdim=True).repeat(1,1,t), torch.sqrt(x_tmp.clamp(min=1e-4)).repeat(1,1,t)), dim=1)
w = self.attention(global_x)
mu = torch.sum(x * w, dim=2)
sg = torch.sqrt( ( torch.sum((x**2) * w, dim=2) - mu**2 ).clamp(min=1e-4) )
x = torch.cat((mu,sg),1)
x = self.bn5(x)
x = self.fc6(x)
x = self.bn6(x)
return x