forked from replicate/cog-sdxl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess.py
599 lines (505 loc) · 19.9 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
# Have SwinIR upsample
# Have BLIP auto caption
# Have CLIPSeg auto mask concept
import gc
import fnmatch
import mimetypes
import os
import re
import shutil
import tarfile
from pathlib import Path
from typing import List, Literal, Optional, Tuple, Union
from zipfile import ZipFile
import cv2
import mediapipe as mp
import numpy as np
import pandas as pd
import torch
from PIL import Image, ImageFilter
from tqdm import tqdm
from transformers import (
BlipForConditionalGeneration,
BlipProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
Swin2SRForImageSuperResolution,
Swin2SRImageProcessor,
)
from predict import download_weights
# model is fixed to Salesforce/blip-image-captioning-large
BLIP_URL = "https://weights.replicate.delivery/default/blip_large/blip_large.tar"
BLIP_PROCESSOR_URL = (
"https://weights.replicate.delivery/default/blip_processor/blip_processor.tar"
)
BLIP_PATH = "./blip-cache"
BLIP_PROCESSOR_PATH = "./blip-proc-cache"
# model is fixed to CIDAS/clipseg-rd64-refined
CLIPSEG_URL = "https://weights.replicate.delivery/default/clip_seg_rd64_refined/clip_seg_rd64_refined.tar"
CLIPSEG_PROCESSOR = "https://weights.replicate.delivery/default/clip_seg_processor/clip_seg_processor.tar"
CLIPSEG_PATH = "./clipseg-cache"
CLIPSEG_PROCESSOR_PATH = "./clipseg-proc-cache"
# model is fixed to caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr
SWIN2SR_URL = "https://weights.replicate.delivery/default/swin2sr_realworld_sr_x4_64_bsrgan_psnr/swin2sr_realworld_sr_x4_64_bsrgan_psnr.tar"
SWIN2SR_PATH = "./swin2sr-cache"
TEMP_OUT_DIR = "./temp/"
TEMP_IN_DIR = "./temp_in/"
CSV_MATCH = "caption"
def preprocess(
input_images_filetype: str,
input_zip_path: Path,
caption_text: str,
mask_target_prompts: str,
target_size: int,
crop_based_on_salience: bool,
use_face_detection_instead: bool,
temp: float,
substitution_tokens: List[str],
) -> Path:
# assert str(files).endswith(".zip"), "files must be a zip file"
# clear TEMP_IN_DIR first.
for path in [TEMP_OUT_DIR, TEMP_IN_DIR]:
if os.path.exists(path):
shutil.rmtree(path)
os.makedirs(path)
caption_csv = None
if input_images_filetype == "zip" or str(input_zip_path).endswith(".zip"):
with ZipFile(str(input_zip_path), "r") as zip_ref:
for zip_info in zip_ref.infolist():
if zip_info.filename[-1] == "/" or zip_info.filename.startswith(
"__MACOSX"
):
continue
mt = mimetypes.guess_type(zip_info.filename)
if mt and mt[0] and mt[0].startswith("image/"):
zip_info.filename = os.path.basename(zip_info.filename)
zip_ref.extract(zip_info, TEMP_IN_DIR)
if (
mt
and mt[0]
and mt[0] == "text/csv"
and CSV_MATCH in zip_info.filename
):
zip_info.filename = os.path.basename(zip_info.filename)
zip_ref.extract(zip_info, TEMP_IN_DIR)
caption_csv = os.path.join(TEMP_IN_DIR, zip_info.filename)
elif input_images_filetype == "tar" or str(input_zip_path).endswith(".tar"):
assert str(input_zip_path).endswith(
".tar"
), "files must be a tar file if not zip"
with tarfile.open(input_zip_path, "r") as tar_ref:
for tar_info in tar_ref:
if tar_info.name[-1] == "/" or tar_info.name.startswith("__MACOSX"):
continue
mt = mimetypes.guess_type(tar_info.name)
if mt and mt[0] and mt[0].startswith("image/"):
tar_info.name = os.path.basename(tar_info.name)
tar_ref.extract(tar_info, TEMP_IN_DIR)
if mt and mt[0] and mt[0] == "text/csv" and CSV_MATCH in tar_info.name:
tar_info.name = os.path.basename(tar_info.name)
tar_ref.extract(tar_info, TEMP_IN_DIR)
caption_csv = os.path.join(TEMP_IN_DIR, tar_info.name)
else:
assert False, "input_images_filetype must be zip or tar"
output_dir: str = TEMP_OUT_DIR
load_and_save_masks_and_captions(
files=TEMP_IN_DIR,
output_dir=output_dir,
caption_text=caption_text,
caption_csv=caption_csv,
mask_target_prompts=mask_target_prompts,
target_size=target_size,
crop_based_on_salience=crop_based_on_salience,
use_face_detection_instead=use_face_detection_instead,
temp=temp,
substitution_tokens=substitution_tokens,
)
return Path(TEMP_OUT_DIR)
@torch.no_grad()
@torch.cuda.amp.autocast()
def swin_ir_sr(
images: List[Image.Image],
target_size: Optional[Tuple[int, int]] = None,
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),
**kwargs,
) -> List[Image.Image]:
"""
Upscales images using SwinIR. Returns a list of PIL images.
If the image is already larger than the target size, it will not be upscaled
and will be returned as is.
"""
if not os.path.exists(SWIN2SR_PATH):
download_weights(SWIN2SR_URL, SWIN2SR_PATH)
model = Swin2SRForImageSuperResolution.from_pretrained(SWIN2SR_PATH).to(device)
processor = Swin2SRImageProcessor()
out_images = []
for image in tqdm(images):
ori_w, ori_h = image.size
if target_size is not None:
if ori_w >= target_size[0] and ori_h >= target_size[1]:
out_images.append(image)
continue
inputs = processor(image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
output = (
outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy()
)
output = np.moveaxis(output, source=0, destination=-1)
output = (output * 255.0).round().astype(np.uint8)
output = Image.fromarray(output)
out_images.append(output)
return out_images
@torch.no_grad()
@torch.cuda.amp.autocast()
def clipseg_mask_generator(
images: List[Image.Image],
target_prompts: Union[List[str], str],
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),
bias: float = 0.01,
temp: float = 1.0,
**kwargs,
) -> List[Image.Image]:
"""
Returns a greyscale mask for each image, where the mask is the probability of the target prompt being present in the image
"""
if isinstance(target_prompts, str):
print(
f'Warning: only one target prompt "{target_prompts}" was given, so it will be used for all images'
)
target_prompts = [target_prompts] * len(images)
if not os.path.exists(CLIPSEG_PROCESSOR_PATH):
download_weights(CLIPSEG_PROCESSOR, CLIPSEG_PROCESSOR_PATH)
if not os.path.exists(CLIPSEG_PATH):
download_weights(CLIPSEG_URL, CLIPSEG_PATH)
processor = CLIPSegProcessor.from_pretrained(CLIPSEG_PROCESSOR_PATH)
model = CLIPSegForImageSegmentation.from_pretrained(CLIPSEG_PATH).to(device)
masks = []
for image, prompt in tqdm(zip(images, target_prompts)):
original_size = image.size
inputs = processor(
text=[prompt, ""],
images=[image] * 2,
padding="max_length",
truncation=True,
return_tensors="pt",
).to(device)
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits / temp, dim=0)[0]
probs = (probs + bias).clamp_(0, 1)
probs = 255 * probs / probs.max()
# make mask greyscale
mask = Image.fromarray(probs.cpu().numpy()).convert("L")
# resize mask to original size
mask = mask.resize(original_size)
masks.append(mask)
return masks
@torch.no_grad()
def blip_captioning_dataset(
images: List[Image.Image],
text: Optional[str] = None,
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
substitution_tokens: Optional[List[str]] = None,
**kwargs,
) -> List[str]:
"""
Returns a list of captions for the given images
"""
if not os.path.exists(BLIP_PROCESSOR_PATH):
download_weights(BLIP_PROCESSOR_URL, BLIP_PROCESSOR_PATH)
if not os.path.exists(BLIP_PATH):
download_weights(BLIP_URL, BLIP_PATH)
processor = BlipProcessor.from_pretrained(BLIP_PROCESSOR_PATH)
model = BlipForConditionalGeneration.from_pretrained(BLIP_PATH).to(device)
captions = []
text = text.strip()
print(f"Input captioning text: {text}")
for image in tqdm(images):
inputs = processor(image, return_tensors="pt").to("cuda")
out = model.generate(
**inputs, max_length=150, do_sample=True, top_k=50, temperature=0.7
)
caption = processor.decode(out[0], skip_special_tokens=True)
# BLIP 2 lowercases all caps tokens. This should properly replace them w/o messing up subwords. I'm sure there's a better way to do this.
for token in substitution_tokens:
print(token)
sub_cap = " " + caption + " "
print(sub_cap)
sub_cap = sub_cap.replace(" " + token.lower() + " ", " " + token + " ")
caption = sub_cap.strip()
captions.append(text + " " + caption)
print("Generated captions", captions)
return captions
def face_mask_google_mediapipe(
images: List[Image.Image], blur_amount: float = 0.0, bias: float = 50.0
) -> List[Image.Image]:
"""
Returns a list of images with masks on the face parts.
"""
mp_face_detection = mp.solutions.face_detection
mp_face_mesh = mp.solutions.face_mesh
face_detection = mp_face_detection.FaceDetection(
model_selection=1, min_detection_confidence=0.1
)
face_mesh = mp_face_mesh.FaceMesh(
static_image_mode=True, max_num_faces=1, min_detection_confidence=0.1
)
masks = []
for image in tqdm(images):
image_np = np.array(image)
# Perform face detection
results_detection = face_detection.process(image_np)
ih, iw, _ = image_np.shape
if results_detection.detections:
for detection in results_detection.detections:
bboxC = detection.location_data.relative_bounding_box
bbox = (
int(bboxC.xmin * iw),
int(bboxC.ymin * ih),
int(bboxC.width * iw),
int(bboxC.height * ih),
)
# make sure bbox is within image
bbox = (
max(0, bbox[0]),
max(0, bbox[1]),
min(iw - bbox[0], bbox[2]),
min(ih - bbox[1], bbox[3]),
)
print(bbox)
# Extract face landmarks
face_landmarks = face_mesh.process(
image_np[bbox[1] : bbox[1] + bbox[3], bbox[0] : bbox[0] + bbox[2]]
).multi_face_landmarks
# https://github.com/google/mediapipe/issues/1615
# This was def helpful
indexes = [
10,
338,
297,
332,
284,
251,
389,
356,
454,
323,
361,
288,
397,
365,
379,
378,
400,
377,
152,
148,
176,
149,
150,
136,
172,
58,
132,
93,
234,
127,
162,
21,
54,
103,
67,
109,
]
if face_landmarks:
mask = Image.new("L", (iw, ih), 0)
mask_np = np.array(mask)
for face_landmark in face_landmarks:
face_landmark = [face_landmark.landmark[idx] for idx in indexes]
landmark_points = [
(int(l.x * bbox[2]) + bbox[0], int(l.y * bbox[3]) + bbox[1])
for l in face_landmark
]
mask_np = cv2.fillPoly(
mask_np, [np.array(landmark_points)], 255
)
mask = Image.fromarray(mask_np)
# Apply blur to the mask
if blur_amount > 0:
mask = mask.filter(ImageFilter.GaussianBlur(blur_amount))
# Apply bias to the mask
if bias > 0:
mask = np.array(mask)
mask = mask + bias * np.ones(mask.shape, dtype=mask.dtype)
mask = np.clip(mask, 0, 255)
mask = Image.fromarray(mask)
# Convert mask to 'L' mode (grayscale) before saving
mask = mask.convert("L")
masks.append(mask)
else:
# If face landmarks are not available, add a black mask of the same size as the image
masks.append(Image.new("L", (iw, ih), 255))
else:
print("No face detected, adding full mask")
# If no face is detected, add a white mask of the same size as the image
masks.append(Image.new("L", (iw, ih), 255))
return masks
def _crop_to_square(
image: Image.Image, com: List[Tuple[int, int]], resize_to: Optional[int] = None
):
cx, cy = com
width, height = image.size
if width > height:
left_possible = max(cx - height / 2, 0)
left = min(left_possible, width - height)
right = left + height
top = 0
bottom = height
else:
left = 0
right = width
top_possible = max(cy - width / 2, 0)
top = min(top_possible, height - width)
bottom = top + width
image = image.crop((left, top, right, bottom))
if resize_to:
image = image.resize((resize_to, resize_to), Image.Resampling.LANCZOS)
return image
def _center_of_mass(mask: Image.Image):
"""
Returns the center of mass of the mask
"""
x, y = np.meshgrid(np.arange(mask.size[0]), np.arange(mask.size[1]))
mask_np = np.array(mask) + 0.01
x_ = x * mask_np
y_ = y * mask_np
x = np.sum(x_) / np.sum(mask_np)
y = np.sum(y_) / np.sum(mask_np)
return x, y
def load_and_save_masks_and_captions(
files: Union[str, List[str]],
output_dir: str = TEMP_OUT_DIR,
caption_text: Optional[str] = None,
caption_csv: Optional[str] = None,
mask_target_prompts: Optional[Union[List[str], str]] = None,
target_size: int = 1024,
crop_based_on_salience: bool = True,
use_face_detection_instead: bool = False,
temp: float = 1.0,
n_length: int = -1,
substitution_tokens: Optional[List[str]] = None,
):
"""
Loads images from the given files, generates masks for them, and saves the masks and captions and upscale images
to output dir. If mask_target_prompts is given, it will generate kinda-segmentation-masks for the prompts and save them as well.
Example:
>>> x = load_and_save_masks_and_captions(
files="./data/images",
output_dir="./data/masks_and_captions",
caption_text="a photo of",
mask_target_prompts="cat",
target_size=768,
crop_based_on_salience=True,
use_face_detection_instead=False,
temp=1.0,
n_length=-1,
)
"""
os.makedirs(output_dir, exist_ok=True)
# load images
if isinstance(files, str):
# check if it is a directory
if os.path.isdir(files):
# get all the .png .jpg in the directory
files = (
_find_files("*.png", files)
+ _find_files("*.jpg", files)
+ _find_files("*.jpeg", files)
)
if len(files) == 0:
raise Exception(
f"No files found in {files}. Either {files} is not a directory or it does not contain any .png or .jpg/jpeg files."
)
if n_length == -1:
n_length = len(files)
files = sorted(files)[:n_length]
print("Image files: ", files)
images = [Image.open(file).convert("RGB") for file in files]
# captions
if caption_csv:
print(f"Using provided captions")
caption_df = pd.read_csv(caption_csv)
# sort images to be consistent with 'sorted' above
caption_df = caption_df.sort_values("image_file")
captions = caption_df["caption"].values
print("Captions: ", captions)
if len(captions) != len(images):
print("Not the same number of captions as images!")
print(f"Num captions: {len(captions)}, Num images: {len(images)}")
print("Captions: ", captions)
print("Images: ", files)
raise Exception(
"Not the same number of captions as images! Check that all files passed in have a caption in your caption csv, and vice versa"
)
else:
print(f"Generating {len(images)} captions...")
captions = blip_captioning_dataset(
images, text=caption_text, substitution_tokens=substitution_tokens
)
if mask_target_prompts is None:
mask_target_prompts = ""
temp = 999
print(f"Generating {len(images)} masks...")
if not use_face_detection_instead:
seg_masks = clipseg_mask_generator(
images=images, target_prompts=mask_target_prompts, temp=temp
)
else:
seg_masks = face_mask_google_mediapipe(images=images)
# find the center of mass of the mask
if crop_based_on_salience:
coms = [_center_of_mass(mask) for mask in seg_masks]
else:
coms = [(image.size[0] / 2, image.size[1] / 2) for image in images]
# based on the center of mass, crop the image to a square
images = [
_crop_to_square(image, com, resize_to=None) for image, com in zip(images, coms)
]
print(f"Upscaling {len(images)} images...")
# upscale images anyways
images = swin_ir_sr(images, target_size=(target_size, target_size))
images = [
image.resize((target_size, target_size), Image.Resampling.LANCZOS)
for image in images
]
seg_masks = [
_crop_to_square(mask, com, resize_to=target_size)
for mask, com in zip(seg_masks, coms)
]
data = []
# clean TEMP_OUT_DIR first
if os.path.exists(output_dir):
for file in os.listdir(output_dir):
os.remove(os.path.join(output_dir, file))
os.makedirs(output_dir, exist_ok=True)
# iterate through the images, masks, and captions and add a row to the dataframe for each
for idx, (image, mask, caption) in enumerate(zip(images, seg_masks, captions)):
image_name = f"{idx}.src.png"
mask_file = f"{idx}.mask.png"
# save the image and mask files
image.save(output_dir + image_name)
mask.save(output_dir + mask_file)
# add a new row to the dataframe with the file names and caption
data.append(
{"image_path": image_name, "mask_path": mask_file, "caption": caption},
)
df = pd.DataFrame(columns=["image_path", "mask_path", "caption"], data=data)
# save the dataframe to a CSV file
df.to_csv(os.path.join(output_dir, "captions.csv"), index=False)
def _find_files(pattern, dir="."):
"""Return list of files matching pattern in a given directory, in absolute format.
Unlike glob, this is case-insensitive.
"""
rule = re.compile(fnmatch.translate(pattern), re.IGNORECASE)
return [os.path.join(dir, f) for f in os.listdir(dir) if rule.match(f)]