-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlogger.py
741 lines (594 loc) · 20.5 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
import os
import sys
import shutil
import json
import time
import datetime
import tempfile
import warnings
from collections import defaultdict
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow
from tensorflow.core.util import event_pb2
from tensorflow.python.util import compat
from stable_baselines.common.misc_util import mpi_rank_or_zero
DEBUG = 10
INFO = 20
WARN = 30
ERROR = 40
DISABLED = 50
class KVWriter(object):
"""
Key Value writer
"""
def writekvs(self, kvs):
"""
write a dictionary to file
:param kvs: (dict)
"""
raise NotImplementedError
class SeqWriter(object):
"""
sequence writer
"""
def writeseq(self, seq):
"""
write an array to file
:param seq: (list)
"""
raise NotImplementedError
class HumanOutputFormat(KVWriter, SeqWriter):
def __init__(self, filename_or_file):
"""
log to a file, in a human readable format
:param filename_or_file: (str or File) the file to write the log to
"""
if isinstance(filename_or_file, str):
self.file = open(filename_or_file, 'wt')
self.own_file = True
else:
assert hasattr(filename_or_file, 'write'), 'Expected file or str, got {}'.format(filename_or_file)
self.file = filename_or_file
self.own_file = False
def writekvs(self, kvs):
# Create strings for printing
key2str = {}
for (key, val) in sorted(kvs.items()):
if isinstance(val, float):
valstr = '%-8.3g' % (val,)
else:
valstr = str(val)
key2str[self._truncate(key)] = self._truncate(valstr)
# Find max widths
if len(key2str) == 0:
warnings.warn('Tried to write empty key-value dict')
return
else:
keywidth = max(map(len, key2str.keys()))
valwidth = max(map(len, key2str.values()))
# Write out the data
dashes = '-' * (keywidth + valwidth + 7)
lines = [dashes]
for (key, val) in sorted(key2str.items()):
lines.append('| %s%s | %s%s |' % (
key,
' ' * (keywidth - len(key)),
val,
' ' * (valwidth - len(val)),
))
lines.append(dashes)
self.file.write('\n'.join(lines) + '\n')
# Flush the output to the file
self.file.flush()
@classmethod
def _truncate(cls, string):
return string[:20] + '...' if len(string) > 23 else string
def writeseq(self, seq):
seq = list(seq)
for (i, elem) in enumerate(seq):
self.file.write(elem)
if i < len(seq) - 1: # add space unless this is the last one
self.file.write(' ')
self.file.write('\n')
self.file.flush()
def close(self):
"""
closes the file
"""
if self.own_file:
self.file.close()
class JSONOutputFormat(KVWriter):
def __init__(self, filename):
"""
log to a file, in the JSON format
:param filename: (str) the file to write the log to
"""
self.file = open(filename, 'wt')
def writekvs(self, kvs):
for key, value in sorted(kvs.items()):
if hasattr(value, 'dtype'):
if value.shape == () or len(value) == 1:
# if value is a dimensionless numpy array or of length 1, serialize as a float
kvs[key] = float(value)
else:
# otherwise, a value is a numpy array, serialize as a list or nested lists
kvs[key] = value.tolist()
self.file.write(json.dumps(kvs) + '\n')
self.file.flush()
def close(self):
"""
closes the file
"""
self.file.close()
class CSVOutputFormat(KVWriter):
def __init__(self, filename):
"""
log to a file, in a CSV format
:param filename: (str) the file to write the log to
"""
self.file = open(filename, 'w+t')
self.keys = []
self.sep = ','
def writekvs(self, kvs):
# Add our current row to the history
extra_keys = kvs.keys() - self.keys
if extra_keys:
self.keys.extend(extra_keys)
self.file.seek(0)
lines = self.file.readlines()
self.file.seek(0)
for (i, key) in enumerate(self.keys):
if i > 0:
self.file.write(',')
self.file.write(key)
self.file.write('\n')
for line in lines[1:]:
self.file.write(line[:-1])
self.file.write(self.sep * len(extra_keys))
self.file.write('\n')
for i, key in enumerate(self.keys):
if i > 0:
self.file.write(',')
value = kvs.get(key)
if value is not None:
self.file.write(str(value))
self.file.write('\n')
self.file.flush()
def close(self):
"""
closes the file
"""
self.file.close()
def summary_val(key, value):
"""
:param key: (str)
:param value: (float)
"""
kwargs = {'tag': key, 'simple_value': float(value)}
return tf.Summary.Value(**kwargs)
def valid_float_value(value):
"""
Returns True if the value can be successfully cast into a float
:param value: (Any) the value to check
:return: (bool)
"""
try:
float(value)
return True
except TypeError:
return False
class TensorBoardOutputFormat(KVWriter):
def __init__(self, folder):
"""
Dumps key/value pairs into TensorBoard's numeric format.
:param folder: (str) the folder to write the log to
"""
os.makedirs(folder, exist_ok=True)
self.dir = folder
self.step = 1
prefix = 'events'
path = os.path.join(os.path.abspath(folder), prefix)
self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path))
def writekvs(self, kvs):
summary = tf.Summary(value=[summary_val(k, v) for k, v in kvs.items() if valid_float_value(v)])
event = event_pb2.Event(wall_time=time.time(), summary=summary)
event.step = self.step # is there any reason why you'd want to specify the step?
self.writer.WriteEvent(event)
self.writer.Flush()
self.step += 1
def close(self):
"""
closes the file
"""
if self.writer:
self.writer.Close()
self.writer = None
def make_output_format(_format, ev_dir, log_suffix=''):
"""
return a logger for the requested format
:param _format: (str) the requested format to log to ('stdout', 'log', 'json', 'csv' or 'tensorboard')
:param ev_dir: (str) the logging directory
:param log_suffix: (str) the suffix for the log file
:return: (KVWrite) the logger
"""
os.makedirs(ev_dir, exist_ok=True)
if _format == 'stdout':
return HumanOutputFormat(sys.stdout)
elif _format == 'log':
return HumanOutputFormat(os.path.join(ev_dir, 'log%s.txt' % log_suffix))
elif _format == 'json':
return JSONOutputFormat(os.path.join(ev_dir, 'progress%s.json' % log_suffix))
elif _format == 'csv':
return CSVOutputFormat(os.path.join(ev_dir, 'progress%s.csv' % log_suffix))
elif _format == 'tensorboard':
return TensorBoardOutputFormat(os.path.join(ev_dir, 'tb%s' % log_suffix))
else:
raise ValueError('Unknown format specified: %s' % (_format,))
# ================================================================
# API
# ================================================================
def logkv(key, val):
"""
Log a value of some diagnostic
Call this once for each diagnostic quantity, each iteration
If called many times, last value will be used.
:param key: (Any) save to log this key
:param val: (Any) save to log this value
"""
Logger.CURRENT.logkv(key, val)
def logkv_mean(key, val):
"""
The same as logkv(), but if called many times, values averaged.
:param key: (Any) save to log this key
:param val: (Number) save to log this value
"""
Logger.CURRENT.logkv_mean(key, val)
def logkvs(key_values):
"""
Log a dictionary of key-value pairs
:param key_values: (dict) the list of keys and values to save to log
"""
for key, value in key_values.items():
logkv(key, value)
def dumpkvs():
"""
Write all of the diagnostics from the current iteration
"""
Logger.CURRENT.dumpkvs()
def getkvs():
"""
get the key values logs
:return: (dict) the logged values
"""
return Logger.CURRENT.name2val
def log(*args, level=INFO):
"""
Write the sequence of args, with no separators,
to the console and output files (if you've configured an output file).
level: int. (see logger.py docs) If the global logger level is higher than
the level argument here, don't print to stdout.
:param args: (list) log the arguments
:param level: (int) the logging level (can be DEBUG=10, INFO=20, WARN=30, ERROR=40, DISABLED=50)
"""
Logger.CURRENT.log(*args, level=level)
def debug(*args):
"""
Write the sequence of args, with no separators,
to the console and output files (if you've configured an output file).
Using the DEBUG level.
:param args: (list) log the arguments
"""
log(*args, level=DEBUG)
def info(*args):
"""
Write the sequence of args, with no separators,
to the console and output files (if you've configured an output file).
Using the INFO level.
:param args: (list) log the arguments
"""
log(*args, level=INFO)
def warn(*args):
"""
Write the sequence of args, with no separators,
to the console and output files (if you've configured an output file).
Using the WARN level.
:param args: (list) log the arguments
"""
log(*args, level=WARN)
def error(*args):
"""
Write the sequence of args, with no separators,
to the console and output files (if you've configured an output file).
Using the ERROR level.
:param args: (list) log the arguments
"""
log(*args, level=ERROR)
def set_level(level):
"""
Set logging threshold on current logger.
:param level: (int) the logging level (can be DEBUG=10, INFO=20, WARN=30, ERROR=40, DISABLED=50)
"""
Logger.CURRENT.set_level(level)
def get_level():
"""
Get logging threshold on current logger.
:return: (int) the logging level (can be DEBUG=10, INFO=20, WARN=30, ERROR=40, DISABLED=50)
"""
return Logger.CURRENT.level
def get_dir():
"""
Get directory that log files are being written to.
will be None if there is no output directory (i.e., if you didn't call start)
:return: (str) the logging directory
"""
return Logger.CURRENT.get_dir()
record_tabular = logkv
dump_tabular = dumpkvs
class ProfileKV:
def __init__(self, name):
"""
Usage:
with logger.ProfileKV("interesting_scope"):
code
:param name: (str) the profiling name
"""
self.name = "wait_" + name
def __enter__(self):
self.start_time = time.time()
def __exit__(self, _type, value, traceback):
Logger.CURRENT.name2val[self.name] += time.time() - self.start_time
def profile(name):
"""
Usage:
@profile("my_func")
def my_func(): code
:param name: (str) the profiling name
:return: (function) the wrapped function
"""
def decorator_with_name(func):
def func_wrapper(*args, **kwargs):
with ProfileKV(name):
return func(*args, **kwargs)
return func_wrapper
return decorator_with_name
# ================================================================
# Backend
# ================================================================
class Logger(object):
# A logger with no output files. (See right below class definition)
# So that you can still log to the terminal without setting up any output files
DEFAULT = None
CURRENT = None # Current logger being used by the free functions above
def __init__(self, folder, output_formats):
"""
the logger class
:param folder: (str) the logging location
:param output_formats: ([str]) the list of output format
"""
self.name2val = defaultdict(float) # values this iteration
self.name2cnt = defaultdict(int)
self.level = INFO
self.dir = folder
self.output_formats = output_formats
# Logging API, forwarded
# ----------------------------------------
def logkv(self, key, val):
"""
Log a value of some diagnostic
Call this once for each diagnostic quantity, each iteration
If called many times, last value will be used.
:param key: (Any) save to log this key
:param val: (Any) save to log this value
"""
self.name2val[key] = val
def logkv_mean(self, key, val):
"""
The same as logkv(), but if called many times, values averaged.
:param key: (Any) save to log this key
:param val: (Number) save to log this value
"""
if val is None:
self.name2val[key] = None
return
oldval, cnt = self.name2val[key], self.name2cnt[key]
self.name2val[key] = oldval * cnt / (cnt + 1) + val / (cnt + 1)
self.name2cnt[key] = cnt + 1
def dumpkvs(self):
"""
Write all of the diagnostics from the current iteration
"""
if self.level == DISABLED:
return
for fmt in self.output_formats:
if isinstance(fmt, KVWriter):
fmt.writekvs(self.name2val)
self.name2val.clear()
self.name2cnt.clear()
def log(self, *args, level=INFO):
"""
Write the sequence of args, with no separators,
to the console and output files (if you've configured an output file).
level: int. (see logger.py docs) If the global logger level is higher than
the level argument here, don't print to stdout.
:param args: (list) log the arguments
:param level: (int) the logging level (can be DEBUG=10, INFO=20, WARN=30, ERROR=40, DISABLED=50)
"""
if self.level <= level:
self._do_log(args)
# Configuration
# ----------------------------------------
def set_level(self, level):
"""
Set logging threshold on current logger.
:param level: (int) the logging level (can be DEBUG=10, INFO=20, WARN=30, ERROR=40, DISABLED=50)
"""
self.level = level
def get_dir(self):
"""
Get directory that log files are being written to.
will be None if there is no output directory (i.e., if you didn't call start)
:return: (str) the logging directory
"""
return self.dir
def close(self):
"""
closes the file
"""
for fmt in self.output_formats:
fmt.close()
# Misc
# ----------------------------------------
def _do_log(self, args):
"""
log to the requested format outputs
:param args: (list) the arguments to log
"""
for fmt in self.output_formats:
if isinstance(fmt, SeqWriter):
fmt.writeseq(map(str, args))
Logger.DEFAULT = Logger.CURRENT = Logger(folder=None, output_formats=[HumanOutputFormat(sys.stdout)])
def configure(folder=None, format_strs=None):
"""
configure the current logger
:param folder: (str) the save location (if None, $OPENAI_LOGDIR, if still None, tempdir/openai-[date & time])
:param format_strs: (list) the output logging format
(if None, $OPENAI_LOG_FORMAT, if still None, ['stdout', 'log', 'csv'])
"""
if folder is None:
folder = os.getenv('OPENAI_LOGDIR')
if folder is None:
folder = os.path.join(tempfile.gettempdir(), datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f"))
assert isinstance(folder, str)
os.makedirs(folder, exist_ok=True)
log_suffix = ''
if format_strs is None:
#if mpi_rank_or_zero() == 0:
format_strs = os.getenv('OPENAI_LOG_FORMAT', 'stdout,log,csv').split(',')
#else:
# log_suffix = "-rank%03i" % rank
# format_strs = os.getenv('OPENAI_LOG_FORMAT_MPI', 'log').split(',')
format_strs = filter(None, format_strs)
output_formats = [make_output_format(f, folder, log_suffix) for f in format_strs]
Logger.CURRENT = Logger(folder=folder, output_formats=output_formats)
log('Logging to %s' % folder)
def reset():
"""
reset the current logger
"""
if Logger.CURRENT is not Logger.DEFAULT:
Logger.CURRENT.close()
Logger.CURRENT = Logger.DEFAULT
log('Reset logger')
class ScopedConfigure(object):
def __init__(self, folder=None, format_strs=None):
"""
Class for using context manager while logging
usage:
with ScopedConfigure(folder=None, format_strs=None):
{code}
:param folder: (str) the logging folder
:param format_strs: ([str]) the list of output logging format
"""
self.dir = folder
self.format_strs = format_strs
self.prevlogger = None
def __enter__(self):
self.prevlogger = Logger.CURRENT
configure(folder=self.dir, format_strs=self.format_strs)
def __exit__(self, *args):
Logger.CURRENT.close()
Logger.CURRENT = self.prevlogger
# ================================================================
def _demo():
"""
tests for the logger module
"""
info("hi")
debug("shouldn't appear")
set_level(DEBUG)
debug("should appear")
folder = "/tmp/testlogging"
if os.path.exists(folder):
shutil.rmtree(folder)
configure(folder=folder)
logkv("a", 3)
logkv("b", 2.5)
dumpkvs()
logkv("b", -2.5)
logkv("a", 5.5)
dumpkvs()
info("^^^ should see a = 5.5")
logkv_mean("b", -22.5)
logkv_mean("b", -44.4)
logkv("a", 5.5)
dumpkvs()
with ScopedConfigure(None, None):
info("^^^ should see b = 33.3")
with ScopedConfigure("/tmp/test-logger/", ["json"]):
logkv("b", -2.5)
dumpkvs()
reset()
logkv("a", "longasslongasslongasslongasslongasslongassvalue")
dumpkvs()
warn("hey")
error("oh")
logkvs({"test": 1})
# ================================================================
# Readers
# ================================================================
def read_json(fname):
"""
read a json file using pandas
:param fname: (str) the file path to read
:return: (pandas DataFrame) the data in the json
"""
import pandas
data = []
with open(fname, 'rt') as file_handler:
for line in file_handler:
data.append(json.loads(line))
return pandas.DataFrame(data)
def read_csv(fname):
"""
read a csv file using pandas
:param fname: (str) the file path to read
:return: (pandas DataFrame) the data in the csv
"""
import pandas
return pandas.read_csv(fname, index_col=None, comment='#')
def read_tb(path):
"""
read a tensorboard output
:param path: (str) a tensorboard file OR a directory, where we will find all TB files of the form events.
:return: (pandas DataFrame) the tensorboad data
"""
import pandas
import numpy as np
from glob import glob
# from collections import defaultdict
import tensorflow as tf
if os.path.isdir(path):
fnames = glob(os.path.join(path, "events.*"))
elif os.path.basename(path).startswith("events."):
fnames = [path]
else:
raise NotImplementedError("Expected tensorboard file or directory containing them. Got %s" % path)
tag2pairs = defaultdict(list)
maxstep = 0
for fname in fnames:
for summary in tf.train.summary_iterator(fname):
if summary.step > 0:
for value in summary.summary.value:
pair = (summary.step, value.simple_value)
tag2pairs[value.tag].append(pair)
maxstep = max(summary.step, maxstep)
data = np.empty((maxstep, len(tag2pairs)))
data[:] = np.nan
tags = sorted(tag2pairs.keys())
for (colidx, tag) in enumerate(tags):
pairs = tag2pairs[tag]
for (step, value) in pairs:
data[step - 1, colidx] = value
return pandas.DataFrame(data, columns=tags)
if __name__ == "__main__":
_demo()