|
| 1 | +#!/usr/bin/env bash |
| 2 | + |
| 3 | +# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 |
| 4 | +export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python |
| 5 | + |
| 6 | +set -eou pipefail |
| 7 | + |
| 8 | +stage=-1 |
| 9 | +stop_stage=100 |
| 10 | + |
| 11 | +# This is an example script for fine-tuning. Here, we fine-tune a model trained |
| 12 | +# on WenetSpeech on Aishell. The model used for fine-tuning is |
| 13 | +# pruned_transducer_stateless2 (zipformer). If you want to fine-tune model |
| 14 | +# from another recipe, you can adapt ./pruned_transducer_stateless2/finetune.py |
| 15 | +# for that recipe. If you have any problem, please open up an issue in https://github.com/k2-fsa/icefall/issues. |
| 16 | + |
| 17 | +# We assume that you have already prepared the Aishell manfiest&features under ./data. |
| 18 | +# If you haven't done that, please see https://github.com/k2-fsa/icefall/blob/master/egs/aishell/ASR/prepare.sh. |
| 19 | + |
| 20 | +. shared/parse_options.sh || exit 1 |
| 21 | + |
| 22 | +log() { |
| 23 | + # This function is from espnet |
| 24 | + local fname=${BASH_SOURCE[1]##*/} |
| 25 | + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" |
| 26 | +} |
| 27 | + |
| 28 | +if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then |
| 29 | + log "Stage -1: Download Pre-trained model" |
| 30 | + |
| 31 | + # clone from huggingface |
| 32 | + git lfs install |
| 33 | + git clone https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2 |
| 34 | + |
| 35 | +fi |
| 36 | + |
| 37 | +if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then |
| 38 | + log "Stage 0: Start fine-tuning" |
| 39 | + |
| 40 | + # The following configuration of lr schedule should work well |
| 41 | + # You may also tune the following parameters to adjust learning rate schedule |
| 42 | + initial_lr=0.0001 |
| 43 | + lr_epochs=100 |
| 44 | + lr_batches=100000 |
| 45 | + |
| 46 | + # We recommend to start from an averaged model |
| 47 | + finetune_ckpt=icefall_asr_wenetspeech_pruned_transducer_stateless2/exp/pretrained_epoch_10_avg_2.pt |
| 48 | + lang_dir=icefall_asr_wenetspeech_pruned_transducer_stateless2/data/lang_char |
| 49 | + export CUDA_VISIBLE_DEVICES="0,1" |
| 50 | + |
| 51 | + ./pruned_transducer_stateless2/finetune.py \ |
| 52 | + --world-size 2 \ |
| 53 | + --master-port 18180 \ |
| 54 | + --num-epochs 15 \ |
| 55 | + --context-size 2 \ |
| 56 | + --exp-dir pruned_transducer_stateless2/exp_aishell_finetune \ |
| 57 | + --initial-lr $initial_lr \ |
| 58 | + --lr-epochs $lr_epochs \ |
| 59 | + --lr-batches $lr_batches \ |
| 60 | + --lang-dir $lang_dir \ |
| 61 | + --do-finetune True \ |
| 62 | + --finetune-ckpt $finetune_ckpt \ |
| 63 | + --max-duration 200 |
| 64 | +fi |
| 65 | + |
| 66 | +if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then |
| 67 | + log "Stage 1: Decoding" |
| 68 | + |
| 69 | + epoch=4 |
| 70 | + avg=4 |
| 71 | + |
| 72 | + for m in greedy_search modified_beam_search; do |
| 73 | + python pruned_transducer_stateless2/decode_aishell.py \ |
| 74 | + --epoch $epoch \ |
| 75 | + --avg $avg \ |
| 76 | + --context-size 2 \ |
| 77 | + --beam-size 4 \ |
| 78 | + --exp-dir pruned_transducer_stateless2/exp_aishell_finetune \ |
| 79 | + --max-duration 400 \ |
| 80 | + --decoding-method $m |
| 81 | + done |
| 82 | +fi |
0 commit comments