-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
319 lines (228 loc) · 10.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import tiktoken
import math
import time
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
@dataclass
class GPTConfig:
vocab_size: int = 50304
n_embd: int = 768
n_layer: int = 12
n_head: int = 12
block_size: int = 1024
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
n_head = config.n_head
n_embd = config.n_embd
assert n_embd % n_head == 0
# query, key, value prjections all combined
self.c_attn = nn.Linear(n_embd, 3 * n_embd)
# output projection, after `v` is already multiplied with attention_scores
self.c_proj = nn.Linear(n_embd, n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
block_size = config.block_size
self.register_buffer('bias', torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size))
self.n_embd = n_embd
self.n_head = n_head
def forward(self, x):
B, T, C = x.size() # batch_size, sequence_len, embedding_dim (n_embd)
# total dim = n_head * head_size
# example GPT2 has 12 heads with each hs = 64 thus C= 12*64 = 768
qkv = self.c_attn(x) # get combined qkv matix B, T, n_embd * 3(768*3=2304)
q, k, v = qkv.split(self.n_embd, dim=2) # each item gets n_embd size, dimension against two
# b, seq, n_embd -> b, seq, n_heads, head_size -> b, n_heads, seq_len, head_size
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
# final-> bs, n_heads, seq_len, mini-n_head_embd
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
# # print(f"shape of q: {q.shape}... shape of k : {k.shape}")
# attn = (q @ k.transpose(-2, -1))/(math.sqrt(k.shape[-1]))
# # apply masked fill at places where mask ==0, remember tril is lower triangle
# attn = attn.masked_fill(mask = self.bias[ : , : , :T, :T] == 0, value=float('-inf'))
# attn = F.softmax(attn, dim=-1)
# y = attn @ v # B, n_heads, T/seq, T @ B, n_heads, T/Seq, head_size) -> B, n_heads, T, head_size
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # flash attention
# transpose y to merge all n_heads. B, n_heads, T, head_size -> transpose B, T, n_heads, head_size -> view B, T, Channel_size/n_emb 768
y = y.transpose(1, 2).contiguous().view(B, T, C)
# out projection, B, T, C -> B, T, C
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=nn.LayerNorm(config.n_embd)
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# weight sharing
self.transformer.wte.weight = self.lm_head.weight
# weight initialization
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANOGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.normal_(module.bias, mean=0.0, std=std)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.size() # batch , seq_len
# check if incoming seq_len of idx is within limits
assert T <= self.config.block_size, f"Cannot proceed as your Sequence len : {T} is more than {self.config.block_size}"
# forward for token and position encodings
# shape (T)
pos = torch.arange(0, T, dtype=torch.int32, device=idx.device)
pos_emb = self.transformer.wpe(pos) # position embds of shape (T, n_embd)
token_emb = self.transformer.wte(idx) # token embds of shape (Batch, T/seq_len, n_embd)
x = pos_emb + token_emb
# now forward through transformer blocks
for block in self.transformer.h:
x = block(x)
# pass through final layernorm
x = self.transformer.ln_f(x)
# pass through final LM_HEAD
logits = self.lm_head(x) # shape (Batch_size, T, vocab_size)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
@classmethod
def from_pretrained(cls, model_name):
"""for loading pre-trained GPT model weights from HuggingFace"""
assert model_name in ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']
from transformers import GPT2LMHeadModel
print(f"Loading weights from pretrained GPT model: {model_name}")
# n_layer, n_head, n_embd for each model_name
config_args = {
'gpt2': dict(n_layer=12, n_embd=768, n_head=12), # has 124M params
'gpt2-medium': dict(n_layer=24, n_embd=1024, n_head=16), # 350M params
'gpt2-large': dict(n_layer=36, n_embd=1280, n_head=20), # 774M params
'gpt2-xl': dict(n_layer=48, n_embd=1600, n_head=25) # 1558M params
}[model_name]
config_args['vocab_size'] = 50257 # same for all GPT2 checkpoints
config_args['block_size'] = 1024 # max seq len 1024 for all GPT2 checkpoints
config = GPTConfig(**config_args)
model = GPT(config)
sd = model.state_dict()
sd_keys = sd.keys()
sd_keys = [key for key in sd_keys if not key.endswith('.attn.bias')] # discard this mask, not a parameter
# initialize transformer model
model_hf = GPT2LMHeadModel.from_pretrained(model_name)
sd_hf = model_hf.state_dict()
sd_hf_keys = [key for key in sd_hf.keys() if
not key.endswith('.attn.masked_bias')] # to discard, not a parameter
sd_hf_keys = [key for key in sd_hf.keys() if not key.endswith('.attn.bias')] # to discard, not a param
# transposing these to match openai's Conv1d usage with Linear layer
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
print("=======\nDifference in keys: ", set(sd_keys) - set(sd_hf_keys))
assert len(sd_keys) == len(
sd_hf_keys), f"mismatched keys: sd_keys {len(sd_keys)} != sd_hd_keys {len(sd_hf_keys)}"
for key in sd_hf_keys:
if any(key.endswith(w) for w in transposed):
assert sd_hf[key].shape[::-1] == sd[key].shape
with torch.no_grad():
sd[key].copy_(sd_hf[key].t())
else:
# simple copy for other params
assert sd_hf[key].shape == sd[key].shape
with torch.no_grad():
sd[key].copy_(sd_hf[key])
return model
class DataLoaderLite:
def __init__(self, B, T):
self.B = B
self.T = T
with open('input.txt', 'r') as f:
text = f.read()
enc = tiktoken.get_encoding('gpt2')
tokens = enc.encode(text)
self.tokens = torch.tensor(tokens)
print(f'loaded len : {len(self.tokens)}')
print(f'1 epoch = {len(self.tokens) // (B * T)} batches ')
self.current_position = 0
def next_batch(self):
B, T = self.B, self.T
buf = self.tokens[self.current_position: self.current_position + (B * T) + 1]
x = buf[:-1].view(B, T)
y = buf[1:].view(B, T)
self.current_position += (B * T)
if self.current_position + (B * T + 1) > len(self.tokens):
self.current_position = 0
return x, y
torch.set_float32_matmul_precision('high')
max_lr = 6e-4
min_lr = 0.1 * max_lr
warmup_steps = 10
max_steps = 5001
def get_lr(iteration):
if iteration < warmup_steps:
return max_lr * (iteration + 1) / warmup_steps
if iteration > max_steps:
return min_lr
decay_ratio = (iteration - warmup_steps) / (max_steps - warmup_steps)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (max_lr - min_lr)
torch.set_default_device('mps')
model = GPT(GPTConfig())
optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4, betas=(0.9, 0.95), eps=1e-8)
train_loader = DataLoaderLite(B=8, T=128)
print(f"\nTotal trainable parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
start = time.time()
for i in range(max_steps):
t0 = time.time()
x, y = train_loader.next_batch()
optimizer.zero_grad()
with torch.autocast(device_type='cpu', dtype=torch.bfloat16):
logits, loss = model(x, y)
loss.backward()
# grad clip
norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
lr = get_lr(i)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
optimizer.step()
# torch.cuda.synchronize()
t1 = time.time()
dt = (t1 - t0) * 1000
tokens_per_sec = (train_loader.B * train_loader.T) / (dt)
# print happens via CPU, hence wait (synchronize GPU)
print(
f'step : {i + 1} | loss: {loss.item()} | dt: {dt:.2f} ms | tokens/sec: {tokens_per_sec:.2f} | norm: {norm:.2f}')
end = time.time()
print("final loss: ", loss)
print(f"total time: {int(end - start)} seconds")